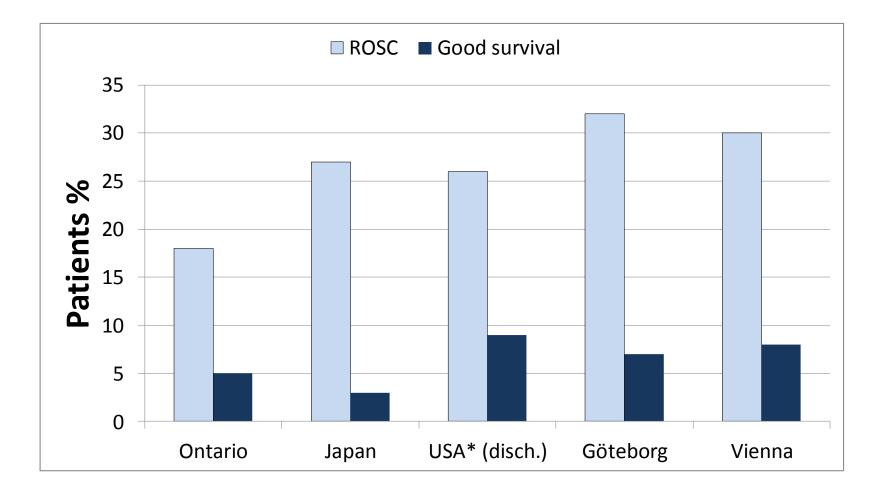


INTERNATIONAL CRITICAL CARE AND EMERGENCY MEDICINE CONGRESS

Emergency Physicians Association of Turkey

# **Post-resuscitation care**


**Prof. Wilhelm Behringer** 

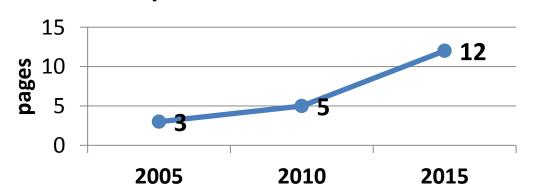
Center of Emergency Medicine University of Jena

# **Conflict of interest**

Emcools Shareholder and founder, honoraria Zoll: honoraria Bard: honoraria, nephew works for Bard

### What happens after ROSC?




Stiell, NEJM 2004 Ong, Resuscitation 2015 Chan, Circulation 2014 Fairbanks, Resuscitation 2007 Nürnberger, Resuscitation 2012

### What happens after ROSC?





- Emphasis on the treatment of the post-cardiac arrest syndrome
- Structured post-resuscitation treatment protocol



### **ERC** post-resuscitation care

#### **Return of spontaneous circulation and comatose**

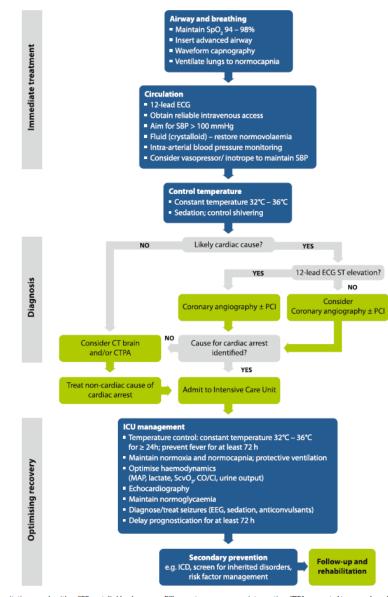
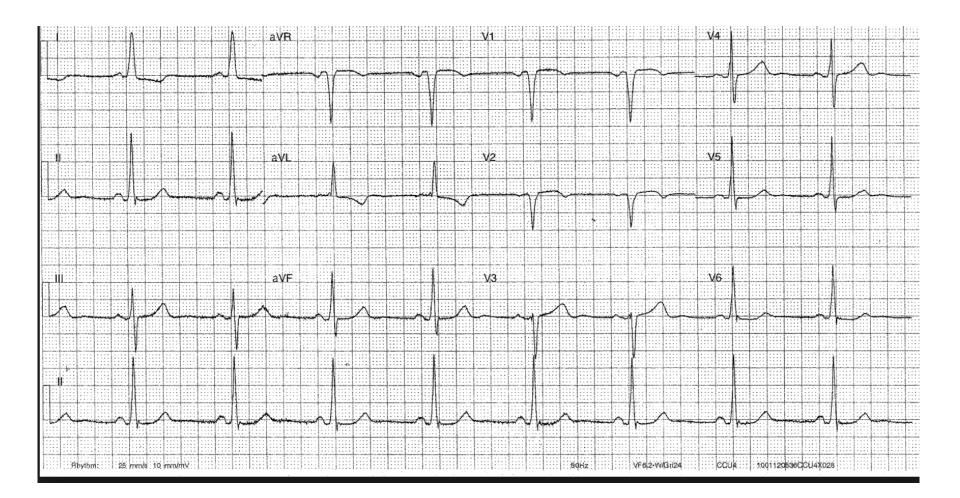



Fig. 5.1. Post-resuscitation care algorithm. SBP: systolic blood pressure; PCI: percutaneous coronary intervention; CTPA: computed tomography pulmonary angiogram; ICU: intensive care unit; MAP: mean arterial pressure; ScvO<sub>2</sub>: central venous oxygenation; CO/CI: cardiac output/cardiac index; EEG; electroencephalography; ICD: implanted cardioverter defibrillator,



- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

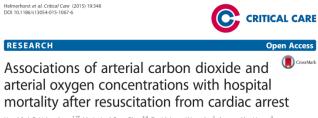



- 64 yo male, Hx: HTN, smoking, antihypertensive drugs
- Witnessed CA at home, bystander CPR wife
- Ambulance arrives after 8 min
- Initial EKG VF, total epi 3 mg, shock 4x, ROSC 23 min
- Arrives in the ED, correctly intubated, 100% FiO<sub>2</sub>

# Case

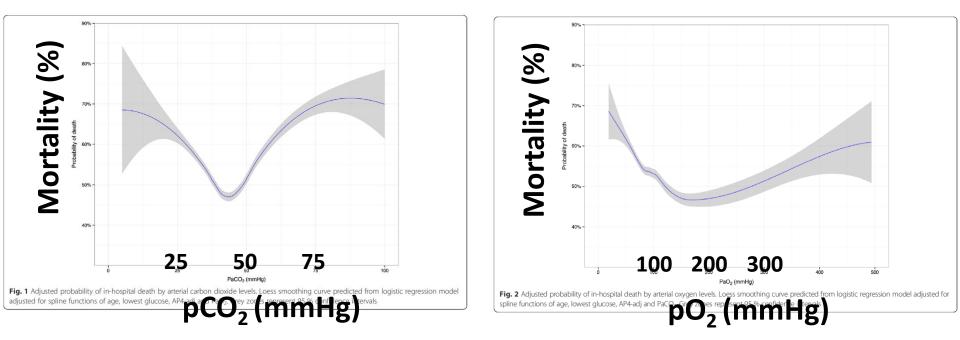
- MAP = 70 mmHg
- HR = 110/min
- SaO<sub>2</sub> = 100%
- Temp = 36,8°C

- pO<sub>2</sub> = 320 mmHg (42 kPa)
- pCO<sub>2</sub> = 32 mmHg (4,3 kPa)
- pH = 7,12
- Lactate = 13 mmol/L
- Glucose = 280 mg/dL (15,5 mmol/L)
- K = 3,6 mmol/L
- Na = 136 mmol/L









- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

### **Ventilation and oxygenation**



Hendrik J. F. Helmerhorst<sup>1,2\*</sup>, Marie-José Roos-Blom<sup>3,4</sup>, David J. van Westerloo<sup>1</sup>, Ameen Abu-Hanna<sup>3</sup>, Nicolette F. de Keizer<sup>3,4</sup> and Evert de Jonge<sup>1,4</sup>

### 5,258 cardiac arrest patients admitted to 82 ICUs in the Netherlands



# Case

- MAP = 70 mmHg
- HR = 110/min
- SaO<sub>2</sub> = 100%
- Temp = 36,8°C
  - Reduce FiO<sub>2</sub>
  - Decrease TV/RR

- pO<sub>2</sub> = 320 mmHg (42 kPa)
- pCO<sub>2</sub> = 32 mmHg (4,3 kPa)
- pH = 7,12
- Lactate = 13 mmol/L
- Glucose = 280 mg/dL (15,5 mmol/L)
- K = 3,6 mmol/L
- Na = 136 mmol/L



- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 66, NO. 1, 2015 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.05.009

#### THE PRESENT AND FUTURE

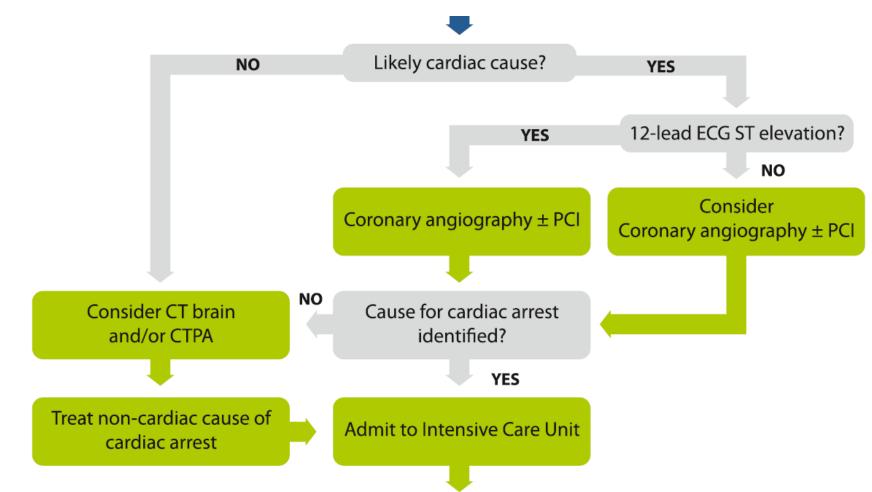
COUNCIL PERSPECTIVES

#### **Cardiac Arrest**

#### A Treatment Algorithm for Emergent Invasive Cardiac Procedures in the Resuscitated Comatose Patient

Tanveer Rab, MD,\* Karl B. Kern, MD,† Jacqueline E. Tamis-Holland, MD,† Timothy D. Henry, MD,§ Michael McDaniel, MD,|| Neal W. Dickert, MD, PhD,\* Joaquin E. Cigarroa, MD,¶ Matthew Keadey, MD,# Stephen Ramee, MD,\*\* on behalf of the Interventional Council, American College of Cardiology

### 58% of CA patients without STelevation have significant CAD


### **TABLE 2** Angiographic Findings in Patients With Cardiac Arrest and No ST-Segment Elevation on ECG

| First Author, Year (Ref. #)    | Acute<br>Occlusion | Culprit<br>Lesion* | Significant<br>CAD† |
|--------------------------------|--------------------|--------------------|---------------------|
| Merchant et al., 2008 (55)     | 6/17 (35)          | -                  | 10/17 (55)          |
| Reynolds et al., 2009 (14)     | _                  | -                  | 31/54 (57)          |
| Anyfantakis et al., 2009 (56)  | -                  | -                  | 27/44 (61)          |
| Radsel et al., 2011 (31)       | 4/54 (7)           | 13/54 (24)         | 32/54 (59)          |
| Bro-Jeppesen et al., 2012 (30) | -                  | -                  | 43/82 <b>(</b> 52)  |
| Dumas et al., 2010 (3)         | _                  | _                  | 176/301 (58)        |
| Hollenbeck et al., 2014 (25)   | 44/163 (27)        | _                  | _                   |
| Kern et al., 2015 (52)         | 23                 | 33                 | _                   |
| Total (%)                      | 23                 | 29                 | 58                  |

Values are n/N (%) or %. \*Defined as acute occlusion or irregular plaque morphology with or without thrombus. †Defined according to the definition used in each study.

CAD = coronary artery disease; ECG = electrocardiogram.

# **Post-ROSC coronary angiography**



Significance of arterial hypotension after resuscitation from cardiac arrest\*

Stephen Trzeciak, MD, MPH; Alan E. Jones, MD; J. Hope Kilgannon, MD; Barry Milcarek, PhD; Krystal Hunter, MBA; Nathan I. Shapiro, MD, MPH; Steven M. Hollenberg, MD; R. Phillip Dellinger, MD; Joseph E. Parrillo, MD

(Crit Care Med 2009; 37:2895-2903)

8.736 patients, 120 ICUs US

Hypotension: one or more documented SBP <90 mmHg within 1 hr of ICU arrival

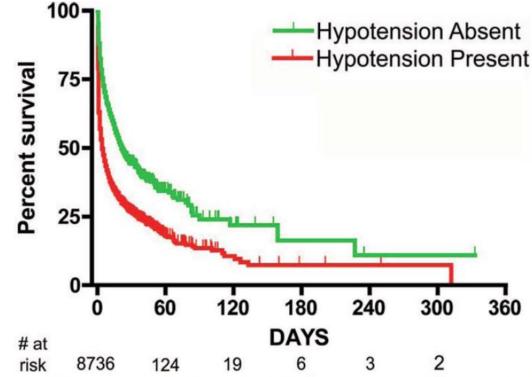



Figure 1. Kaplan-Meier survival curves for patients with Hypotension Present and Hypotension Absent after return of spontaneous circulation from cardiac arrest (with censoring). The survival fractions diverged significantly by log-rank test (p < .001).



Contents lists available at ScienceDirect

Resuscitation



journal homepage: www.elsevier.com/locate/resuscitation

**Clinical Paper** 

An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: Time to drop 'one-size-fits-all' hemodynamic targets?<sup>†</sup>



K. Ameloot<sup>a,\*,1</sup>, C. Genbrugge<sup>b,c,1</sup>, I. Meex<sup>b,c</sup>, F. Jans<sup>b,c</sup>, W. Boer<sup>b</sup>, M. Vander Laenen<sup>b</sup>, B. Ferdinande<sup>a</sup>, W. Mullens<sup>a,c</sup>, M. Dupont<sup>a</sup>, J. Dens<sup>a,c</sup>, C. DeDeyne<sup>b,c</sup>

<sup>a</sup> Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium

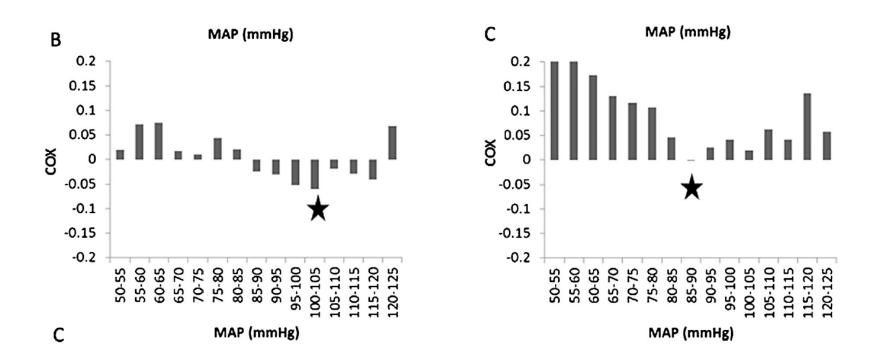
<sup>b</sup> Department of Anesthesiology and Critical Care Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium

<sup>c</sup> Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium

- 51 patients after CA
- NIRS measurment of cerebral oxygen saturation
- 35% disturbed autoregulation (independent predictor for poor outcome)

Resuscitation 90 (2015) 121-126




**Clinical Paper** 

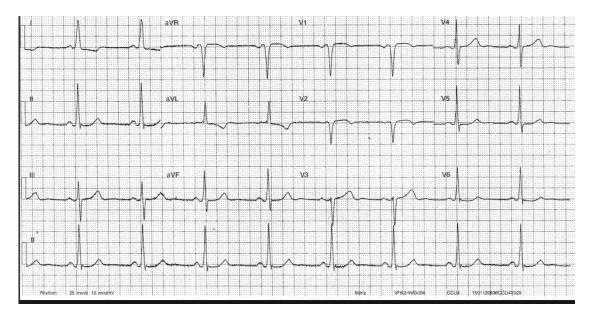
An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: Time to drop 'one-size-fits-all' hemodynamic targets?<sup>\*</sup>



K. Ameloot<sup>a,\*,1</sup>, C. Genbrugge<sup>b,c,1</sup>, I. Meex<sup>b,c</sup>, F. Jans<sup>b,c</sup>, W. Boer<sup>b</sup>, M. Vander Laenen<sup>b</sup>, B. Ferdinande<sup>a</sup>, W. Mullens<sup>a,c</sup>, M. Dupont<sup>a</sup>, J. Dens<sup>a,c</sup>, C. DeDeyne<sup>b,c</sup>

<sup>a</sup> Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium <sup>b</sup> Department of Anesthesiology and Critical Care Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium <sup>c</sup> Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium




**Fig. 2.** Pooled COX per 5 mmHg MAP plot. (A) For all 51 study patients, (B) for 18 patients with disturbed/right shifted autoregulation, (C) for 33 patients with preserved autoregulation. \* Cox predicted optimal MAP.

# Case

- MAP = 70 mmHg
- HR = 110/min
- SaO<sub>2</sub> = 100%
- Temp = 36,8°C
- Give fluids
- Give vasopressors
- Aim MAP 80-100 mmHg

- pO<sub>2</sub> = 320 mmHg (42 kPa)
- pCO<sub>2</sub> = 32 mmHg (4,3 kPa)
- pH = 7,12
- Lactate = 13 mmol/L
- Glucose = 280 mg/dL (15,5 mmol/L)
- K = 3,6 mmol/L
- Na = 136 mmol/L





### **Consider cath-lab**



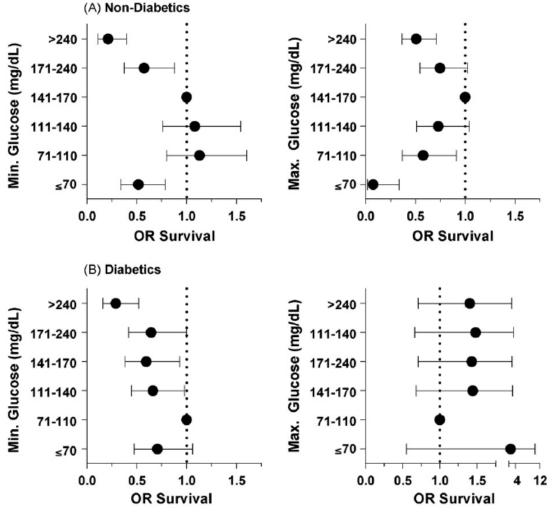
- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

Resuscitation 80 (2009) 624-630



Clinical paper

Derangements in blood glucose following initial resuscitation from in-hospital cardiac arrest: A report from the national registry of cardiopulmonary resuscitation<sup>\*</sup>


David G. Beiser<sup>a,\*,d</sup>, Gordon E. Carr<sup>b,d</sup>, Dana P. Edelson<sup>b,d</sup>, Mary Ann Peberd<sup>\*,\*,d</sup> Terry L. Vanden Hoek<sup>a,d</sup>

<sup>a</sup> Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA <sup>b</sup> Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA <sup>c</sup> Division of Cariology, Virginia Commonwealth University, Richmond, VA 22298, USA

### 17.800 adult IHCA

Odds ratio of survival

after CA



# Case

- MAP = 70 mmHg
- HR = 110/min
- SaO<sub>2</sub> = 100%
- Temp = 36,8°C
  - Consider insulin
  - Avoid hypoglycemia

- pO<sub>2</sub> = 320 mmHg (42 kPa)
- pCO<sub>2</sub> = 32 mmHg (4,3 kPa)
- pH = 7,12
- Lactate = 13 mmol/L
- Glucose = 280 mg/dL (15,5 mmol/L)
- K = 3,6 mmol/L
- Na = 136 mmol/L

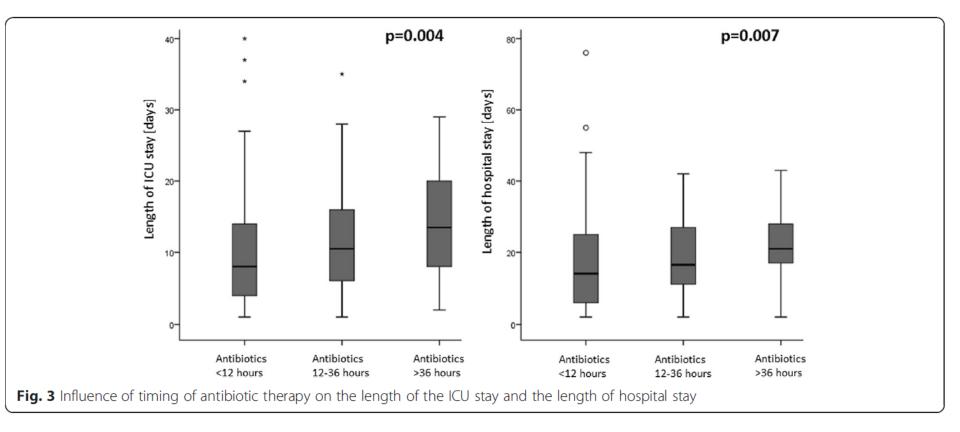


- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations



Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation


**Clinical Paper** 

Prophylactic antibiotics are associated with a lower incidence of pneumonia in cardiac arrest survivors treated with targeted temperature management å

David J. Gagnon<sup>a,\*</sup>, Niklas Nielsen<sup>b</sup>, Gilles L. Fraser<sup>a,c</sup>, Richard R. Riker<sup>c,d,e</sup>, John Dziodzio<sup>c</sup>, Kjetil Sunde<sup>f</sup>, Jan Hovdenes<sup>g</sup>, Pascal Stammet<sup>h</sup>, Hans Friberg<sup>i</sup>, Sten Rubertsson<sup>j</sup>, Michael Wanscher<sup>k</sup>, David B. Seder<sup>c,d,e</sup>

### **Retrospective CA patients 32-34°C:**

- 416 pts prophylactic AB
- 824 pts no prophylactic AB lower incidence of pneumonia (OR 0.09, 95% 0.06–0.14, p<0.001)</li>



RESUSCITATION

CrossMark



- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

Resuscitation 95 (2015) 202-222

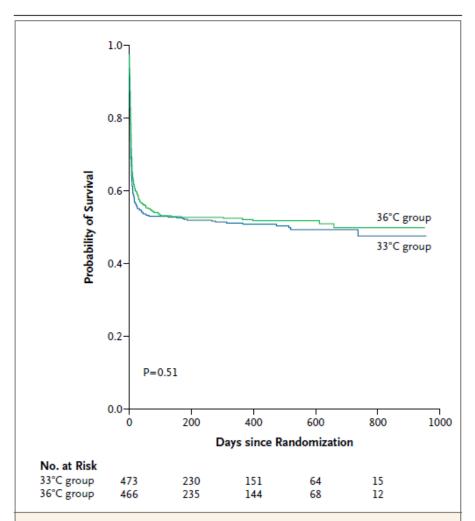


### **2015 Recommendations**

European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015 Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015<sup>+</sup>

Jerry P. Nolan<sup>a,b,\*</sup>, Jasmeet Soar<sup>c</sup>, Alain Cariou<sup>d</sup>, Tobias Cronberg<sup>e</sup>, Véronique R.M. Moulaert<sup>f</sup>, Charles D. Deakin<sup>s</sup>, Bernd W. Bottiger<sup>h</sup>, Hans Friberg<sup>†</sup>, Kjetil Sunde<sup>j</sup>, Claudio Sandroni<sup>k</sup> CrossMark

- Maintain a constant, target temperature between 32°C and 36°C for those patients in whom temperature control is used
- TTM recommended: comatose adults after OHCA with an initial shockable rhythm
- TTM suggested:
  - comatose adults after OHCA with initial non-shockable rhythm
  - Comatose adults after IHCA with any initial rhythm
- If TTM is used: duration at least 24


#### The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest Niklas Nielsen, M.D., Ph.D., Jørn Wetterslev, M.D., Ph.D., Tobias Cronberg, M.D., Ph.D.,

This article was published on November 17, 2013, at NEJM.org.

"In conclusion, our trial does not provide evidence that targeting a body temperature of 33°C confers any benefit for unconscious patients admitted to the hospital after out-of-hospital cardiac arrest, as compared with targeting a body temperature of 36°C."



#### Figure 2. Probability of Survival through the End of the Trial.

Shown are Kaplan–Meier estimates of the probability of survival for patients assigned to a target temperature of either 33°C or 36°C and the number of patients at risk at each time point. The P value was calculated by means of Cox regression, with the effect of the intervention adjusted for the stratification variable of study site.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest

Niklas Nielsen, M.D., Ph.D., Jørn Wetterslev, M.D., Ph.D., Tobias Cronberg, M.D., Ph.D., This article was published on November 17, 2013, at NEJM.org.

Limitations of the study:

- No definition of sedation, analgesia, paralysis
- No definition of cooling methods or goals
- No information on timing of cooling with respect to ROSC
- Majority of patients had very short no-flow time (1 min)

# 33°C or 36°C ?????

### More science after publication of the guidelines



### **Meta-analysis of randomized trials**

#### Arrich J, Cochrane Database Syst Rev. 2016

### **Good neurologic outcome (CPC 1 or 2)**

|                                                                                                            | cooling to 33 | °C   | Contr  | ol    |                                 | Risk Ratio          | Risk Ratio          |
|------------------------------------------------------------------------------------------------------------|---------------|------|--------|-------|---------------------------------|---------------------|---------------------|
| Study or Subgroup                                                                                          | Events        | otal | Events | Total | Weight                          | M-H, Random, 95% Cl | M-H, Random, 95% Cl |
| 1.2.1 Conventional cooling vs no cooling                                                                   |               |      |        |       |                                 |                     |                     |
| Mori 2000                                                                                                  | 18            | 36   | 2      | 18    | 7.3%                            | 4.50 [1.17, 17.30]  | <b>→</b>            |
| Hachimi-Idrissi 2001                                                                                       | 8             | 16   | 2      | 17    | 6.9%                            | 4.25 [1.06, 17.08]  | <b> </b> −−−→       |
| HACA 2002                                                                                                  | 75            | 136  | 54     | 137   | 31.7%                           | 1.40 [1.08, 1.81]   | - <b>-</b> -        |
| Bernard 2002                                                                                               | 21            | 43   | 9      | 34    | 19.1%                           | 1.84 [0.97, 3.49]   |                     |
| Subtotal (95% CI)                                                                                          |               | 231  |        | 206   | 65.1%                           | 1.94 [1.18, 3.21]   | -                   |
| Total events                                                                                               | 122           |      | 67     |       |                                 |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 5.70, df = 3 (P = 0.13); I <sup>2</sup> = 47%   |               |      |        |       |                                 |                     |                     |
| Test for overall effect: Z = 2.60 (P = 0.009)                                                              |               |      |        |       |                                 |                     |                     |
|                                                                                                            |               |      |        |       |                                 |                     |                     |
| 1.2.2 Conventional coo                                                                                     | -             | -    |        | -     |                                 |                     |                     |
| Nielsen 2013                                                                                               | 218           | 469  | 222    | 464   | 34.9%                           | 0.97 [0.85, 1.11]   |                     |
| Subtotal (95% CI)                                                                                          |               | 469  |        | 464   | 34.9%                           | 0.97 [0.85, 1.11]   | •                   |
| Total events                                                                                               | 218           |      | 222    |       |                                 |                     |                     |
| Heterogeneity: Not app                                                                                     |               |      |        |       |                                 |                     |                     |
| Test for overall effect: Z = 0.42 (P = 0.68)                                                               |               |      |        |       |                                 |                     |                     |
| T. I. LIGEN OD                                                                                             |               | 700  |        |       | 400.00                          | 4 50 54 00 0 001    |                     |
| Total (95% CI)                                                                                             |               | 700  |        | 670   | 100.0%                          | 1.53 [1.02, 2.29]   | -                   |
| Total events                                                                                               | 340           |      | 289    |       |                                 |                     |                     |
| Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 17.28, df = 4 (P = 0.002); l <sup>2</sup> = 77% |               |      |        |       | 0.2 0.5 1 2 5                   |                     |                     |
| Test for overall effect: Z = 2.04 (P = 0.04) Favours control Favours cooling                               |               |      |        |       | Favours control Favours cooling |                     |                     |
| Test for subgroup differences: Chi <sup>2</sup> = 6.84, df = 1 (P = 0.009), I <sup>2</sup> = 85.4%         |               |      |        |       |                                 |                     |                     |

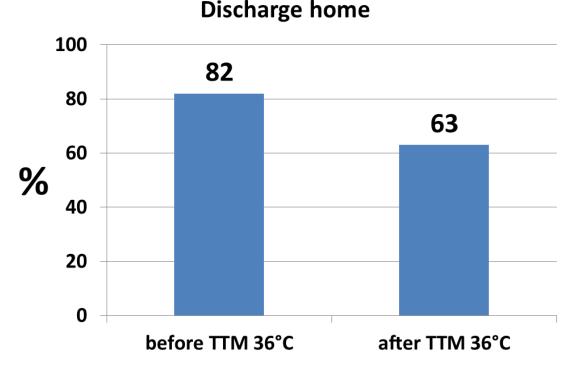
#### Post Resuscitation Care

AS073

Impact of change to target temperature management on post-arrest care for out-of-hospital cardiac arrest patients



Janet Bray<sup>1,\*</sup>, Dion Stub<sup>2</sup>, Jason Bloom<sup>2</sup>, Louise Segan<sup>2</sup>, Biswadev Mitra<sup>2</sup>, Karen Smith<sup>3</sup>, Judith Finn<sup>4</sup>, Stephen Bernard<sup>2</sup>


 <sup>1</sup> Monash University, Melbourne, Victoria, Australia
 <sup>2</sup> Alfred Hospital, Melbourne, Victoria, Australia
 <sup>3</sup> Ambulance Victoria, Melbourne, Victoria, Australia
 <sup>4</sup> Curtin University, Perth, Western Australia, Australia

**Purpose of the study:** In December 2013, our institution changed the target temperature for post cardiac arrest patients from 33 °C to 36 °C. The aim of this study is to examine the actual temperatures that were achieved and the impact on patient outcomes.

**Materials and methods:** We conducted an audit of consecutive ventricular fibrillation out-of-hospital cardiac arrest (VF-OHCA) patients admitted to a tertiary referral hospital in Melbourne (Australia). We excluded traumatic OHCAs.

Results: Over the two-year period there were 70 VF-OHCAs admitted (28 before TTM change and 42 after). The median duration of arrest was 16 (IQR=19) minutes. Patients' demographics, arrest features (e.g. witnessed, bystander CPR etc.) and admissions to the intensive care unit (ICU, 82% vs. 71%, p = 0.31) were similar between the two periods. There was no difference in ED cardiology consults (93% vs. 100%, p = 0.15), coronary angiography during admission (79% vs. 76%, p = 0.82) and all patients admitted to ICU had documented orders for TTM. Compliance with targeted temperature management was significantly worse in the 36 °C target period: the average time at or below target temperature was significantly shorter after the change (22 h vs. 8 h, p < 0.001) and 50% of patients recorded temperatures >37.1 °C in the first 24-h after the target change. In ICU patients, rates of survival to hospital discharge were lower in the 36 °C period (74% vs. 63%, p = 0.41), as were the numbers of survivors discharged home (82% vs. 63%, p = 0.34). A higher temperature (>37.1 °C) in the first 24-h of ICU admission was

- VF-OOH CA
- 2 year period
- 28 patients before TTM change (32-34°C)
- 42 patients after TTM change (36°)



Resuscitation 98 (2016) 48-63



Canadian Guidelines for the use of targeted temperature management (therapeutic hypothermia) after cardiac arrest: A joint statement from The Canadian Critical Care Society (CCCS), Canadian Neurocritical Care Society (CNCCS), and the Canadian Critical Care Trials Group (CCCTG)



| Clinical question                              | Recommendation                                                                                    |
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
| What temperature should patients be cooled to? | We suggest that patients undergoing TTM be cooled to a target temperature between 32 °C and 34 °C |
| How soon should TTM be initiated?              | We recommend that clinicians attempt to achieve target temperature as rapidly as possible         |

# Case

- MAP = 70 mmHg
- HR = 110/min
- SaO<sub>2</sub> = 100%
- Temp = 36,8°C

Cool to 33°C as soon as feasible!

- pO<sub>2</sub> = 320 mmHg (42 kPa)
- pCO<sub>2</sub> = 32 mmHg (4,3 kPa)
- pH = 7,12
- Lactate = 13 mmol/L
- Glucose = 280 mg/dL (15,5 mmol/L)
- K = 3,6 mmol/L
- Na = 136 mmol/L



- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

### In which hospitals should we treat CA patients?



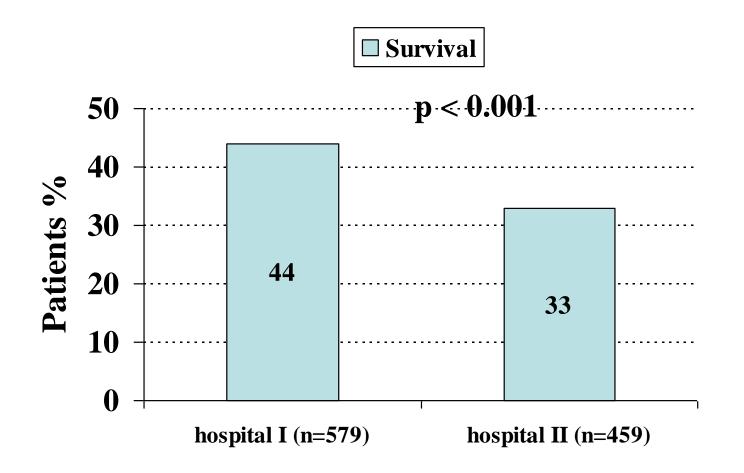
Resuscitation 43 (2000) 201-211





www.elsevier.com/locate/resuscitation

Is hospital care of major importance for outcome after out-of-hospital cardiac arrest?


Experience acquired from patients with out-of-hospital cardiac arrest resuscitated by the same Emergency Medical Service and admitted to one of two hospitals over a 16-year period in the municipality of Göteborg

Johan Engdahl \*, Putte Abrahamsson, Angela Bång, Jonny Lindqvist, Thomas Karlsson, Johan Herlitz

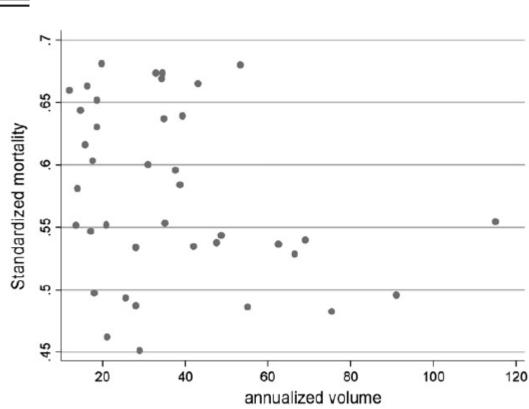
Division of Cardiology, Sahlgrenska University Hospital, SE-413 435, Göteborg, Sweden

Received 14 June 1999; received in revised form 8 November 1999; accepted 18 November 1999

### In which hospitals should we treat CA patients?



### In which hospitals should we treat CA patients?




Clinical paper

Inter-hospital variability in post-cardiac arrest mortality<sup>\*</sup>

Brendan G. Carr<sup>a,b,c,d,e,\*</sup>, Jeremy M. Kahn<sup>d,e,f</sup>, Raina M. Merchant<sup>a,b,c,d</sup>, Andrew A. Kramer<sup>g</sup>, Robert W. Neumar<sup>b,c</sup>

Mortality ranging from 46% to 68%



**Figure 2.** In-hospital mortality rate (mortality rates standardized by age, acute physiology score, Glasgow Coma Scale on admission and ventilation status) vs. annualized post-arrest volume: scatter plot of APACHE ICUs.



- Introduction
- Ventilation and oxygenation strategies
- Reperfusion strategies
- Metabolic control
- Antibiotic therapy
- Targeted temperature management
- Cardiac arrest center
- Conclusions and recommendations

# **Conclusion I**

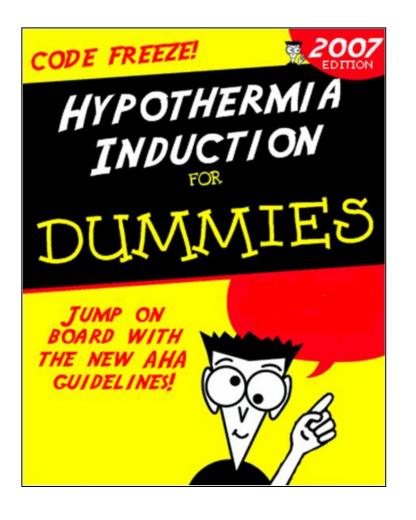
- Ventilation and oxygenation strategies (Guidelines ERC 2015):
  - "... titrate the inspired oxygen concentration to maintain the arterial blood oxygen saturation in the range of 94–98%. Avoid hypoxaemia,"
  - "... it is reasonable to adjust ventilation to achieve normocarbia"
- Reperfusion strategies (Guidelines ERC 2015):
  - "... PCI for post-cardiac arrest patients with STEMI ... it is reasonable to discuss and consider emergent cardiac catheterisation laboratory evaluation after ROSC in patients with the highest risk of a coronary cause for their cardiac arrest."
  - Avoid hypotension
- Metabolic control (Guidelines ERC 2015):
  - "... following ROSC blood glucose should be maintained at ≤10mmol/L (180mg/dl).
    Hypoglycaemia should be avoided."
- Mild therapeutic hypothermia 32-34°C (Guidelines Canada 2016)
  - All VF a "must", all non-VF a "can", avoid fever
  - As early as possible, pre-hospital setting?

# **Conclusion I**

- Ventilation and oxygenation strategies:
  - "... titrate the inspired oxygen concentration to maintain the arterial blood oxygen saturation in the range of 94–98%. Avoid hypoxaemia,"
  - "... it is reasonable to adjust ventilation to achieve normocarbia"
- Reperfusion strategies
  - "... PCI for post-cardiac arrest patients with STEMI ... it is reasonable to discuss and consider emergent cardiac catheterisation laboratory evaluation after ROSC in patients with the highest risk of a coronary cause for their cardiac arrest."
  - Avoid hypotension

### • Metabolic control

### limited evidence


- "... following ROSC blood glucose should be maintained at ≤10mmol/L (180mg/dl).
  Hypoglycaemia should be avoided."
- Mild therapeutic hypothermia 32-34°C (Guidelines Canada 2016)
  - All VF a "must", all non-VF a "can", avoid fever
  - As early as possible, pre-hospital setting?



# **Conclusion II**

# Implementation of cardiac arrest centres!!!!!





# **Be Hot Cool Down**