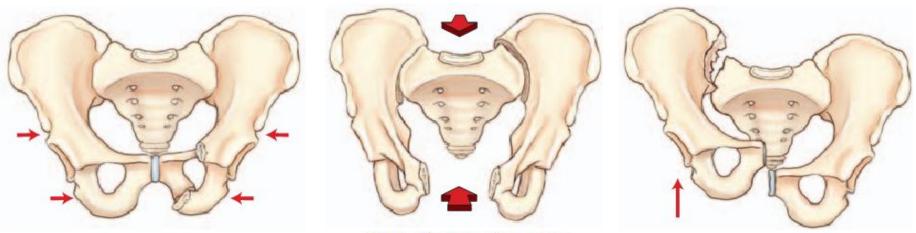
EMERGENCY MANAGEMENT OF UNSTABLE PELVIS

Babak Mahshidfar, M.D. Emergency Physician, FISEM Assistant Professor of EM, IUMS

Pelvic Fractures

- Most are stable & occur with a low-energy mechanism of injury
- Account for 1-3% of all skeletal fractures & 2% of orthopedic hospital admissions
- A bimodal pattern frequency
 - 20-40 y/o
 - > 65 y/o


High-energy Pelvic Fractures

- Abdominal, head, & thoracic injuries
- Musculoskeletal injuries: 60-80%
- Uro-genital injuries: 12%
- Lumbo-sacral injuries: 8%

Young & Burgess Classification

- A. Lateral compression (LC)
- B. Anterior-posterior compression (APC)
- C. Vertical shear (VS)
- D. Combined mechanisms (CM)

B

Anterior-Posterior Compression (Open Book) 15-20% frequency

Vertical Shear 5-15% frequency

Lateral Compression 60-70% frequency

Tile Classification

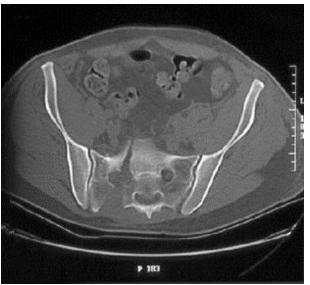
Type A

- Including avulsion fractures, iliac wing fractures, & transverse fractures of the sacrum
- Are stable & do not fracture through the pelvic ring or soft tissues; the posterior ligamentous arch is intact.

Tile Classification

Type B

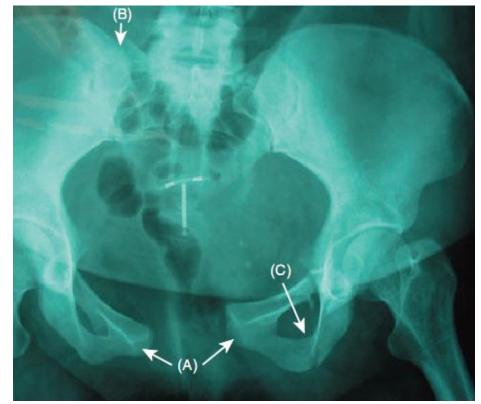
- Including open-book & lateral compression (LC) injuries
- Are rotationally unstable but vertically stable; an incomplete disruption of the posterior pelvic arch is present.


Tile Classification

Type C

 Are vertically & rotationally unstable, with complete disruption of the posterior arch & pelvic floor; the hemi-pelvis thus is completely unstable.

Denis Zone of Injury Classification


- Zone I injury
 - The sacral alar region is involved.
- Zone II injury
 - The sacral foramina are involved.
- Zone III injury

 The central sacral canal is involved; transverse fractures of the sacrum may also occur.

Unstable Pelvis; Clinical Importance

- Pelvic instability (unstable fractures)
 - The reported range for mortality: 9-20%.
- Hemodynamic instability
 - The reported range for mortality: 50% (compared to 10% in hemodynamically stable patients)

Discovering the Mechanism of Injury

- Hemodynamic instability + pelvic fracture
 - Falls from great heights
 - More bleedings
 - Pelvic bleedings
 - Impacts (hits)
 - Less bleedings
 - Associated bleedings

Ph. Ex.

The Destot sign

- A superficial hematoma above the inguinal ligament, in the scrotum or perineum, or in the thigh
- Can indicate a pelvic fracture
- Look for a rotational deformity of the pelvis or lower extremities
- Leg-length discrepancies may also be present with pelvic fractures.

Ph. Ex.

- Avoid compressing & distracting the iliac wings & applying manual traction to determine stability
- Neurologic injuries (3.5-13%) are commonly overlooked.
 - Sacral fractures
 - Frequently involve the bowel & bladder & may also cause sexual dysfunction

Ph. Ex.

- Vaginal & rectal Ex. for all patients with sacral fractures to disclose:
 - Open pelvic fractures which can communicate directly with the rectum, vagina, or skin laceration & may carry a mortality as high as 50%

The Initial Evaluation & Rx.

ABC

- 2 large-bore (16-G) IV catheters
- Aggressive fluid resuscitation?
- A multidisciplinary approach
- Prevention of further hemorrhage
 - Temporary stabilization of displaced pelvic fractures by simple means during the initial evaluation & transportation
 - Immediate external fixation

Temporary Pelvic Stabilization

- Sheet
- Tying the legs together in an internally rotated position
- Commercial pelvic binders
- Vacuum mattress splint
- PASG
- KED

Pelvic Wrap

Secure sheets w/o over-compressing.

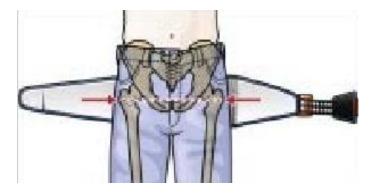
Immobilization & Partial Reduction of Displacement

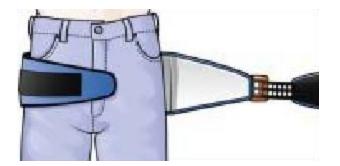
Alternate Method for Pelvic Stabilization: Taping Feet Together

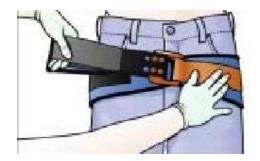
Vacuum Mattress Splint

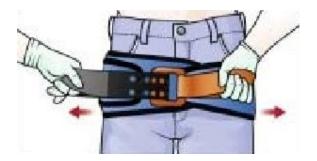
West-type Extrication Devices

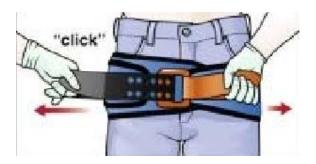
 Described by Amir Salari; RN, MSc, Paramedic, PhD Candidate in Disaster & Emergency Health, Tehran, Iran

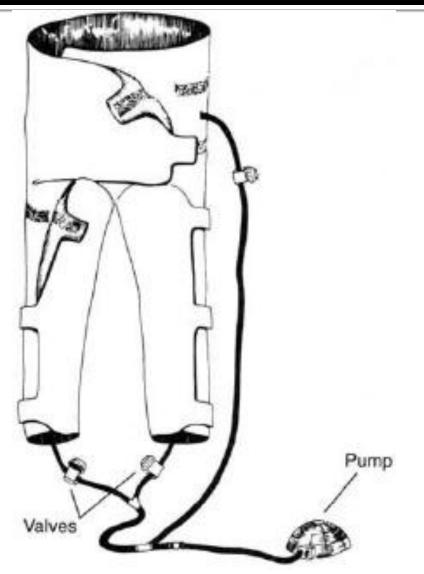





SAM Pelvic Sling

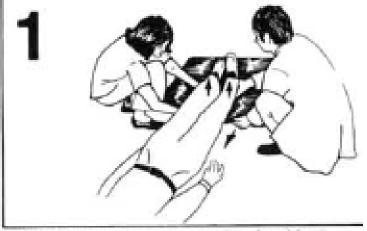




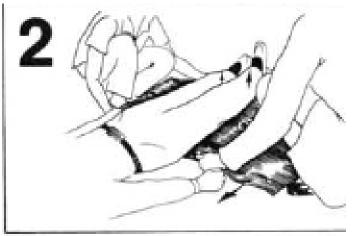


Pneumatic Anti-Shock Garment (PASG) Military Anti-Shock Trousers (MAST) G-suit

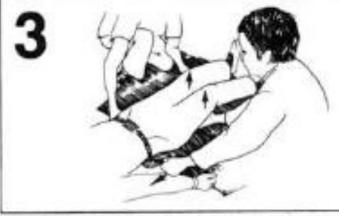
Indications


- Fracture stabilization & hemorrhage control in patients with pelvic or lower ext. fracture
- 2) Blunt or penetrating abdominal trauma & severe hypotension with long transport times (> 30 min), esp. when pre-hospital IV fluid therapy isn't available

Contraindications


Absolute

- CHF
- Pulmonary edema
- Penetrating thoracic injuries
- Relative
 - Pregnancy
 - Evisceration
 - Impaled foreign body in the abdomen
 - Lower ext. compartmental Injury
 - Circumferential lower ext. burns
 - Lumbar spine instability
 - Advanced age

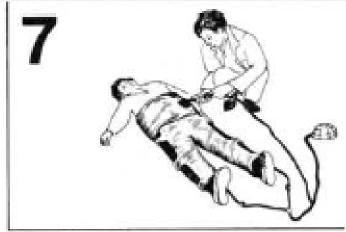

Application

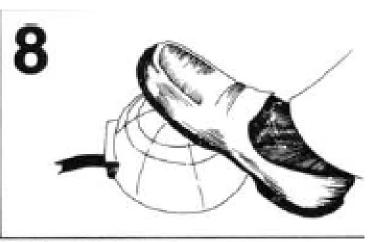
Slide open trousers beneath raised feet...

... to the buttocks.

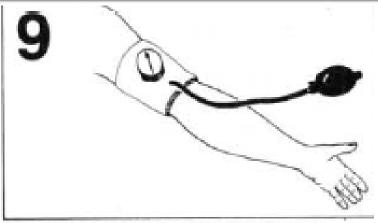
Elevate buttocks and bring trousers up to rib cage.

Enclose left leg and close Velcro.

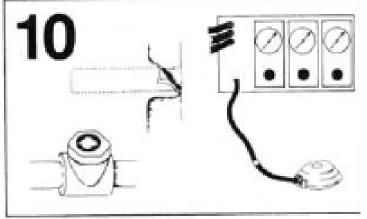

Application


Enclose right leg and close Velcro.

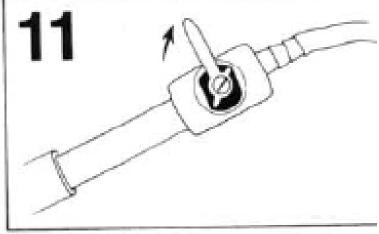
Enclose abdomen and close Velcro.

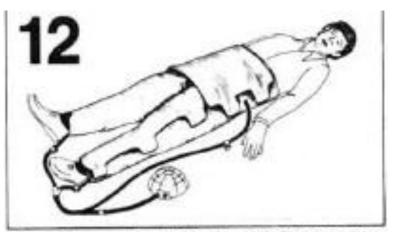


Open stopcocks.



inflate with foot pump.


Application


Check blood pressure. Stop inflation at 100 mm Hg.

Velcro straps, pop-off valves, or gauges prevent overinflation.

Close stopcocks.

The device can be left in place fully inflated for two hours if necessary.

Deflation

- Coagulopathy: relative contraindication
- The leg compartments can remain inflated until any internal hemorrhage is controlled.
- A rapid reduction in LV afterload followed by a decrease in preload
- May be exacerbated by the sudden release of lactic acid & other vaso-active chemicals pooled in the abdomen & the lower ext.
- Improper deflation technique (leaving the abdominal compartment inflated after deflation of the ext. compartments) may facilitate compartment syndrome.

Deflation

- 1. Deflate the abdominal compartment first.
- 2. Release a small amount of air.
- 3. Recheck BP.
- Stop deflation immediately if the SBP falls > 5 mm Hg.
- 5. Infuse additional IV fluids until SBP is restored.
- 6. This process should be followed throughout the entire deflation procedure.

- An AP radiograph of the pelvis on every trauma patient observed in the ED (as part of the ED evaluation protocol)
 - Demonstrates 90% of cases of posterior instability

Stable Fractures

- Characterized by one or more of the following:
 - Impacted vertical fractures of the sacrum
 - Non-displaced fractures of the posterior SI complex
 - Subtle fractures of the upper sacrum as evidenced by asymmetry of the sacral arcuate lines

Unstable Fractures

- Characterized by
 - Hemipelvic cephalad displacement that exceeds 0.5 cm

&

- SI diastasis that exceeds 0.5 cm.
- Findings suggestive of pelvic instability:
 - Cephalad hemipelvic displacement < 1 cm</p>

or

A diastatic fracture of the sacrum or ilium < 0.5 cm</p>

Pelvic Instability

- A fracture of the fifth lumbar transverse process, previously described as a sign of an unstable pelvis, was found in both stable & unstable injuries & is not a reliable sign of pelvic instability.
- Treatment of an unstable fracture should never be delayed for additional radiographic studies.

The Inlet Pelvis Radiograph

A 40-45° caudal tilt view that demonstrates AP displacement & internal rotation associated with lateral compression injuries

Displaced fracture of left SIJ

The Outlet Pelvis Radiograph

A 40-45° cephalad tilt view that demonstrates vertical displacement & fractures of the sacral foramina

Additional Images

- A lateral sacral view
 - Transverse sacral fractures
- A full CTLS spine series for all trauma patients in whom the spine cannot be clinically cleared
- CXR
- EFAST
- Additional CT scans
- MRI?

CT Scan

- 3-mm thin-slice
- A multiply injured patient, if stable, often undergoes CT of the chest, abdomen, & pelvis.

Crescent fracture

Diagnostic Procedures

- Supra-umbilical DPL
 - To evaluate for an intra-abdominal hemorrhage & a ruptured viscus
 - A PPV of 98% & a NPV of 97%
 - An emergency laparotomy indicated if the initial aspirate reveals > 5 mL of gross blood or obvious enteric contents
- Lab tests

Additional Proceures

- Negative DPL results + hemodynamic instability
 - External fixation
- Continued unexplained blood loss despite fracture stabilization & aggressive resuscitation
 - Angiographic exploration
 - Embolization

Timing of Arteriography & Embolization

Controversial

- Most authors recommend arteriography after the initial stabilization, laparotomy, or both.
- Aggressive fluid resuscitation must be continued during angiography.
- Hypothermia may develop during a prolonged radiographic procedure if the patient is not adequately warmed and resuscitated.

Origin of Blood Loss from a Pelvic Injury

- Cancellous bone at the fracture site
- Retroperitoneal lumbar plexus venous injury
- Only 20% of deaths from pelvic hemorrhage are attributed to a major arterial injury.
 - Posterior arterial bleeding (most frequently superior gluteal artery) is more common in patients with unstable posterior pelvic fractures, & anterior arterial bleeding (pudendal or obturator) is more common in patients with LC injuries.
- The abdomen & bladder are frequently injured

Unstable Pelvis

Hope to have a world free of any war