

(Saudi Arabia)

For Listen: November 12-15 acil2020.online

Objectives

- > List the four components of normal tissue perfusion
- Describe the symptoms and signs of shock
- Describe the four common clinical shock syndromes
- Explain the pathophysiology of hemorrhagic shock,
- Describe the management of Hemorrhage shock

Objectives

- Discuss the use of hemostatic agents
- Discuss the use of IV fluids in the treatment of hemorrhagic shock
- Describe when it is appropriate to use tranexamic acid (TXA) in the management of hemorrhage

Normal Perfusion

Normal Perfusion

Blood Pressure = Cardiac Output \times PVR

Cardiac Output = Heart Rate × Stroke Volume

 $CO = 70 \text{ bpm} \times 70 \text{ ml} = 4900 \text{ ml}$

Shock Progression

Shock

- Shock is a continuum
 - ➤ Signs and symptoms are progressive
 - Many symptoms due to catecholamines
 - Cellular process has clinical manifestations
- Compensated and decompensated
 - ➤ How low can you go?
 - Healthy versus older or underlying problems

Hypovolemic Shock

Compensated progression

- Weakness and lightheadedness
- **≻**Pallor
- ➤ Tachycardia
- ➤ Diaphoresis
- ➤ Tachypnea
- Urinary output decreased
- Peripheral pulses weakened
- >Thirst

Hemorrhagic Shock

American College of Surgeons Classes of Acute Hemorrhage

Factors	1		(111	IV
Blood loss	<15% (<750ml)	15-30% (750-1500ml)	30-40% (1500-2000ml)	>40% (>2000ml)
Pulse	>100	>100	>120	>140
B.P.	Normal	Normal	4	44
Pulse pressure	N or ↓	4	11	$\downarrow \downarrow$
Capillary refill	<2s	2-3s	3-4s	>5s
Resp. rate	14-20	20-30	30-40	>40
Urine output ml/hr	30 or more	20-30	5-10	Negligible
Mental status	Slightly anxious	Mildly anxious	Anxious & confused	Confused Lethargic

Shock Progression

- Compensated to decompensated
 - Initial rise in blood pressure due to shunting
 - Initial narrowing of pulse pressure
 - Diastolic raised more than systolic
 - Prolonged hypoxia leads to worsening acidosis
 - Ultimate loss of catecholamine response
 - Compensated shock suddenly "crashes"

Hypovolemic Shock

Decompensated progression

- > Hypotension
 - >Hypovolemia and/or diminished cardiac output
- >Altered mental status
 - Decreased cerebral perfusion, acidosis, hypoxia, catecholamine stimulation
- Cardiac arrest
 - ➤ Critical organ failure
 - Secondary to blood or fluid loss, hypoxia, arrhythmia

Classic Shock Pattern

- > Early shock
 - ➤ 15-25% blood volume
 - > Weakness
 - > Pallor
 - ➤ Tachycardia 120 B/M
 - Narrowed pulse pressure
 - > Thirst
 - Delayed capillary refill

- Late shock
 - > 30-45% blood volume
 - Hypotension
 - First sign of "late shock"
 - Weak or no peripheral pulse
 - Prolonged capillary refill

Capillary Refill

Capillary Refill

Tachycardia

- Most common early sign of illness
 - Transient rise with anxiety, quickly to normal
 - Determine underlying cause
- > Early sign of shock
 - > Suspect hemorrhage: sustained rate > 100
 - Red flag for shock: pulse rate >120
- ➤ No tachycardia does not rule out shock
 - "Relative bradycardia"

Capnography

- ➤ Level of exhaled CO₂ as waveform (ETCO₂)
 - >Typically ~35-40 mmHg
- > Falling ETCO₂
 - Hyperventilation or decreased oxygenation
- \triangleright ETCO₂ < 20 mmHg

Courtesy of Louis B. Mallory, MBA, REMT-P

- May indicate circulatory collapse
- Warning sign of worsening shock

Shock Classification (Syndromes)

1. Low-volume shock 3. Mechanical shock

- > Absolute hypovolemia
 - Hemorrhagic or other fluid loss
- 2. Distributive shock
 - Relative hypovolemia
 - > Neurogenic shock
 - > Vasovagal syncope
 - **≻** Sepsis
 - > Drug overdose
 - > Anaphylaxis

- **≻** Obstructive
 - Cardiac tamponade
 - > Tension pneumothorax
 - Massive pulmonary embolism

4. Cardiogenic

- Myocardial contusion
- Myocardial infarction
- > Severe Arrythmias

Low-Volume Shock

- > Absolute hypovolemia
 - >Loss of volume
 - ➤ Blood vessels can hold more than actually flows
 - Catecholamines cause vasoconstriction
 - > Minor blood loss: vasoconstriction sufficient
 - Severe blood loss: vasoconstriction insufficient
- Clinical presentation
 - "Thready" pulse; tachycardia; pale, flat neck veins

High-Space Shock

Relative hypovolemia

- "Vasodilatory shock"
- Large intact vascular space
- ➤ Interruption of sympathetic nervous system
- Loss of normal vasoconstriction; vascular space becomes much "too large"

Clinical presentation

Varies dependent on type of high-space shock

High-Space Shock Types

Several causes

- ➤ Sepsis syndrome
- ➤ Drug overdose
- >Trauma

Neurogenic shock

- Most typically after injury to spinal cord
 - >Injury prevents additional catecholamine release
 - Circulating catecholamines may briefly preserve

High-Space Shock

> Neurogenic shock

- > Hypotension
- Heart rate normal or slow
- ➤ Skin warm, dry, pink
- Paralysis or deficit
 - No chest movement, simple diaphragmatic

- Drug overdose, sepsis
 - ➤ Tachycardia
 - Skin pale or flushed
 - > Flat neck veins

Mechanical Shock

- Obstructs blood flow to or through heart
 - >Slows venous return
 - > Decreases cardiac output
- > Clinical presentation
 - Distended neck veins
 - ➤ Cyanosis
 - > Catecholamine effects
 - > Pallor, tachycardia, diaphoresis

PASG Research

- Pneumatic antishock garment
 - Uncontrollable internal hemorrhage due to penetrating injury
 - May increase mortality, especially intrathoracic
 - Probably increases bleeding, death due to exsanguination

Courtesy of John Campbell

Controllable Hemorrhage

- > Management
 - Control bleeding
 - ➤ High-flow oxygen
 - > Rapid safe transport
 - >Large-bore IV access

Controllable Hemorrhage

- > Management
 - ➤ Fluid bolus (500–1,000 mL for adult and 20 ml/kg for pediatrics) rapidly, repeat if necessary
 - **Cardiac monitor, SpO₂, ETCO₂**
 - Ongoing exam

Uncontrollable Hemorrhage

Management: External

- Control bleeding
- ➤ Shock position
- ➤ High-flow oxygen
- > Rapid safe transport
- >Large-bore IV access
- > Fluid administration
- ➤ Cardiac monitor, SpO₂, ETCO₂
- Ongoing exam

Courtesy of John Campbell

Fluid Administration

- Uncontrollable hemorrhage
 - May increase bleeding and death
 - ➤ Dilutes clotting factors
 - > Early blood transfusion in severe cases
 - ➤ IV fluids carry almost no oxygen
 - Moribund trauma patients
 - Fluid may be indicated to maintain some circulation
 - Local medical direction

Uncontrollable Hemorrhage

Management: Internal

- > Rapid safe transport
- ➤ Shock position
- ➤ High-flow oxygen
- >Large-bore IV access
- > Fluid administration

© Edward T. Dickinson, MD

- **Cardiac monitor, SpO₂, ETCO₂**
- ➤Ongoing Exam

Fluid Administration

- Internal hemorrhage from blunt trauma
 - >Large-bone fractures
 - ➤ Usually self-limiting bleed, except pelvis
 - >Fluid administration for volume expansion
 - >Large internal blood vessel tear, or laceration or avulsion of internal organ
 - >Fluid may increase bleeding and death
 - Fluid administration to maintain peripheral perfusion
 - >Local medical direction

Fluid Administration

- Uncontrollable hemorrhage
 - Maintain peripheral perfusion
 - >Peripheral pulse
 - ➤ Higher systolic may be required with increased ICP or with history of hypertension
 - > Maintaining consciousness
 - ➤ In absence of traumatic brain injury
 - > "Adequate blood pressure"
 - Controversial with ongoing research
 - Local medical direction

Special Situations

- Severe head injury hypovolemic shock
 - ➤ Glasgow Coma Score of 8 or less
 - Fluid administration
 - ➤ BP of 100 mmHg systolic to maintain cerebral perfusion pressure of at least 60 - 80 mmHg
- Non hemorrhagic hypovolemic shock
 - > General management same as controllable
 - > Fluid administration for volume replacement

Mechanical Shock

> Tension pneumothorax

- Vena cava collapses, prevents venous return
- Mediastinal shift lowers venous return
- Tracheal deviation away from affected side
- Decreased cardiac output

Tension Pneumothorax

Mechanical Shock

Management

- Chest decompression
- Prompt decompression of pleural pressure

Mechanical Shock Causes

Cardiac tamponade

- ➤ Blood fills "potential" space prevents heart filling
- ➤ May occur > 75% with penetrating cardiac injury
- >"Beck's triad"
- Shock, muffled heart tones, distended neck veins

Mechanical Shock Causes

Pericardial Effusion with Tamponade

Normal Heart Cardiac Tamponade restrictive cardiomyopathy **Beck's Triad** Hypotension pericardial sac Jugular venous distention pericardial fluid Muffled heart sounds Pericardial effusion **Electrical Alternans** Pericardial effusion with Tamponade

Cardiac Tamponade

Management

- Rapid safe transport to appropriate facility
 - Cardiac arrest can occur in minutes
- Fluid administration by local medical direction
- Pericardiocentesis (if within scope of practice)

Mechanical Shock Causes

- Myocardial contusion
 - Heart muscle injury and/or cardiac dysrhythmias
 - Rarely causes shock; mostly little or no signs
 - >Severe may cause acute heart failure

Myocardial Contusion

- Management
 - > Rapid safe transport
 - ➤ Cardiac arrest may occur in 5-10 minutes
 - > Cardiac monitoring and treat arrhythmias
 - > Fluid administration may worsen condition

High-Space Shock

- Management
 - ➤ High-flow oxygen
 - Rapid safe transport
 - > Large-bore IV access
 - Fluid bolus 20 mL/kg rapid

- ➤ Calcium channel blocker overdose or sepsis
- Ongoing exam

Tranexamic Acid (TXA)

- Stabilizes fibrin clot after trauma
- By mechanism it cannot be thrombogenic

Dunn CJ, Goa KL: Tranexamic acid: A review of its use in surgery and other indications. Drugs 1999;57:1005-1032

Tranexamic Acid (TXA)

☐ Tranexamic acid

should be given as early as possible to bleeding trauma patients. For trauma patients seen late after injury (>3h), tranexamic acid is less effective and could be harmful.

□ TXA in EMS

- ☐ Give in the field, early and when there is no other option
- ☐ Give in the outlying hospital, prior to transport
- ☐ Use 1:1:1 in the trauma center +/- TXA (if < 3h); the injury is still out.

Summary

- Knowledge about pathophysiology and treatment of shock is essential
 - Critical condition that leads to death
 - Assessment and intervention must be rapid
 - Monitor closely for early signs
- Be aware of management controversies
 - > Rely on local medical direction

>Thank you for your attention

>Smsminsem@srca.org.sa

