Toxic Fever

Dr. Mohammed Alhelail, MBBS, SBEM, ArBEM, FACMT

Vice President, Saudi Society of Emergency Medicine Consultant, Emergency Medicine & Medical Toxicology King Abdulaziz Medical City, Riyadh – Saudi Arabia Assistant Professor, Emergency Medicine – KSAU-HS

- 23 y/o female brought to ED with AMS
- PMH: depression on Rx
- Exam: hyper-reflexia
- VS: HR 110; BP 140/95; RR 20; 99% RA; T 40
- Differential diagnosis?
- Causes of high temperature?
- Management?

Objectives

- Review basic principle of thermoregulation
- Review common causes of toxin-induced hyperthermia
- Understand how to manage toxin-induced hyperthermia

256 PART C THE PATHOPHYSIOLOGIC BASIS OF MEDICAL TOXICOLOGY: THE ORGAN SYSTEM APPROACH

Group	Vital Signs								
	BP	Р	RR	T	Mental Status	Pupil Size	Peristalsis	Diaphoresis	Other
Adrenergic (α , β) agents	\uparrow	Ŷ	Ŷ	\uparrow	Altered	\uparrow	\uparrow	\uparrow	Tremor
Anticholinergic agents	±	Ŷ	±	Ŷ	Altered	\uparrow	\downarrow	\downarrow	Dry mucous membranes, flush, urinary retention
Cholinergic (muscarinic, nicotinic) agents	±	±		-	Altered	±	Ţ	ſ	Salivation, lacrimation, urination, bronchorrhea, fasciculations, brady- cardia
Opioids	\downarrow	\downarrow	\downarrow	\downarrow	Altered	\downarrow	\downarrow	7 <u></u> 2	Hyporeflexia
Withdrawal of opioids	Ŷ	Ŷ		-	Normal	Ŷ	Ţ	Ţ	Nausea, vomiting, hyper- activity, rhinorrhea, piloerection
Sedative-hypnotics or ethanol	\downarrow	\downarrow	\downarrow	±	Altered	±	\downarrow	—	Hyporeflexia
Withdrawal of sedative- hypnotics or ethanol	\uparrow	Ŷ	\uparrow	\uparrow	Altered	Ŷ	Ŷ	—/↑	Nausea, tremor, seizures

TABLE 17–1. Toxic Syndromes

 \uparrow = increases; \downarrow = decreases; \pm = variable; — = change unlikely

Thermoregulatory Principles

- Methods of heat transfer
- Physiology of thermoregulation
- Drug effects on thermoregulation
- Hyperthermia

Methods of Heat Transfer

- Radiation
- Conduction
- Convection
- Evaporation

Physiology of Thermoregulation

- Thermoregulation
 - The complex process that maintains hypothalamic temperature within the range of 36.6-37.4 degrees Celsius
 - Four areas of thermoregulation
 - Hypothalamus
 - Medullary reticular formation
 - Spinalthalamic tract
 - Skin

Physiology of Thermoregulation

Neurotransmiters involved in thermoregulation

Exact mechanism is poorly understood

- Serotonin
- Norepinephrine
- Acetylcholine
- Dopamine
- Prostiglandins
- β-endorphins
- ACTH
- TSH
- α-melanocyte stimulating hormone

Drugs Effect on Thermoregulation

- Impaired heat loss
- Myocardial depression
- Hypothalamic depression
- Impaired behavioral response
- Uncoupled oxidative phosphorylation
- Agitation, Seizure, Rigidity
- Dystonia
- Withdrawal

Drugs That Effect Thermoregulation

- Hyperthemia (NASA):
 - N euroleptic malignant syndrome, nicotine
 - A ntihistamines, Alcohol withdrawal
 - S alicylates, sympathomimetics, serotonin syndrome
 - A nticholinergics, antidepressants, antipsychotics

Thombson T. Emerg Med Clin N Am 25 (2007) 249–281

Drugs That Effect Thermoregulation

Hypothermia (COOLS):

- C arbon monoxide
- O pioids
- O ral hypoglycemic, insulin
- L iquor (alcohols)
- S edative-hypnotics

Thombson T. Emerg Med Clin N Am 25 (2007) 249–281

Factors That Effect Thermoregulation

- Old age
- CNS depression
 - Hypothalamic dysfunction, Infection, ICB, Stroke
- Endocrine
 - DKA, Hyperosmolar coma, Hypothyroid
- Environmental
- Hepatic failure
- Immobilization
- Poor nutrition
- Sepsis
- Uremia

Hyperthermia

- Definition of heatstroke
 - Core temp > 41.1° C
 - Neurologic disturbance
 - Seizure, delirium, coma, agitation, psychosis
 - Patients may maintain ability to sweat

Heatstroke

Nonexertional

Occurs during heat waves

Exertional

- Due to increased motor activity
 - Exercise, seizure, agitation

Precipitating factors

 Fatigue, sleep lose, poor physical conditioning, febrile illness, dehydration, obesity

Heatstroke

- Differential diagnosis
 - Primary hypothalamic lesion
 - Intracerebral bleed
 - Alcohol and sedative-hypnotic withdrawal
 - Seizure
 - Drugs
 - Serotonin syndrome
 - Malignant hyperthermia
 - Neuroleptic malignant syndrome

Heatstroke

Treatment

- Supportive care
- Rapid Cooling
- IV Hydration
- Control the cause
- Conteneous monitoring

Case 2

CC: AMS

HPI: 50 y/o male h/o schizophrenia had medications changed from Chlorpromazine to Risperidone. Dose escalated over the week to control his symptoms. Has become altered from baseline.

PE: hyperthermic, agitated, rigid

Diagnosis? Why?

Neuroleptic malignant syndrome

- "Malignant" = previously high mortality
- Rare (<2.0%), idiosyncratic</p>
- Men>>women
- Any dopamine antagonists
- Usually first 1-2 weeks drug initiation, drug change, dose change, but anytime possible

Case 2: NMS

Clinical diagnosis

Exposure to dopamine antagonists + Tetrad:

- Altered mental status
- Muscular rigidity
- Autonomic instability
- Hyperthermia
 - Altered dopamine response in hypothalamus, agitation, muscle rigidity
 - Correlates with mortality, severe >40 °C

Case 2: NMS

- Poorly understood
- D2 receptor blockade
 - **Nigrostriatum** → muscle rigidity, parkinsonism
 - **Thermoregulatory center** → hyperthermia
 - Mesocortical and mesolimbic → AMS
 - Peripheral sympathetic nerves, vascular smooth muscle → autonomic dysfunction

- Antipsychotic agents with strongest antidopaminergic effects that more likely to cause NMS:
 - Phenothiazines (Chlopromazine, Prochlorperazine)
 - Butyrophenones (Haloperidol, Droperidol), and other typical agents.

Atypical agents, such as olazapine, have been associated with NMS, but these agents as a class are much less likely to be associated with the syndrome

Case 2: NMS

Risk Factors:

- Agitated, dehydrated, large # IM injections
- Rate of increase of dose, not actual dose

May be prolonged course

Complications: rhabdo, metabolic acidosis

Treatment

- Rule out other medical causes
- Stop offending agent
- Agitation benzos, paralysis
- Muscle rigidity benzos, paralysis
- Autonomic instability pressors
- Hyperthermia benzos, paralysis

Treatment

- Dopamine agonists (bromocriptine)
 - Oral medication
 - Takes 24 hrs to work

Dantrolene

- Inhibits Ca+² release from sarcoplasmic reticulum in skeletal muscles
- Muscle relaxation
- Take 24 hrs to work

Anticholinergic agents not effective

- 23 y/o female presented with AMS
- No h/o overdose
- Was just started on citalopram 2 days prior presentation
- VS HR 115; BP 140/50; T 37.9; 99%; RR 15
- Exam: rigid lower limbs
 - Differential diagnosis?
 - Management?

Pharmacology:

- SS results from excessive stimulation of central and peripheral nervous system serotonin receptors namely:
 - 5-HT_{1A} and 5-HT_{2A}
 - It may occur with drug interactions, therapeutic dosing, or deliberate self-harm

- 4 ways to account for excessive serotonin activation at 5-HT_{1A} and 5-HT_{2A} receptors:
 - Decreased serotonin breakdown (MAOIs)
 - Decreased serotonin reuptake (SSRIs, cocaine, dextromethorphan, meperidine, SNRIs)
 - Increased serotonin precursors/agonists (Ltryptophan, LSD)
 - Increased serotonin release (amphetamines, ecstasy, buspirone, lithium)

Triad

- Altered mental status,
- Neuromotor rigidity
- Autonomic disturbances

- Diagnostic Criteria for the Serotonin Syndrome Criteria A, B, and C must each be satisfied
 - A. Occurs after the addition of a known serotonergic agent to an established medication regimen or an increase in the dose of a serotonergic agent
 - B. Other causes ruled out
 - c. A neuroleptic agent had not been started or increased in dosage before the onset of the signs and symptoms

Epidemiology

- Rarely occurs in overdose of SSRI's
- Can occur from a single dose
- Most commonly occurs from adding another Serotonin degradation inhibitor to a current (i.e. SSRI and MAOI-a)

Treatment

- Primary- Supportive care
 - Benzo's for rigidity and agitation
- Aggressive external cooling
- Cyproheptadine PO only

Other Treatments

Propranolol

- Presumed 5-HT1 antagonist
- Worked well in animals

Methylsergide

- Non-selective 5-HT antagonist
- Worked in animals, used in humans with only anecdotal reports

SS Observation criteria

- Patients with suspected SS should be evaluated in a healthcare facility
- Mild cases that resolve with benzodiazepines and supportive care may be observed in a monitored setting until asymptomatic

SS Outcome

- Most symptoms resolve within 24 hours
- No long term sequela as long as there are no complications from the acute event (i.e. prolonged hyperthermia)
- Be cautioned of the long t_{1/2} of some SSRI's (Fluoxetine) and potential for recurrence

- 65 y/o male brought from home for AMS days. Has schizophrenia, but more agitated and altered. Recent URI. Given over the counter cold medications
- Rx: chlopromazine, benztropine, Benedryl cold and sinus x 1 week
- PE: febrile, tachycardiac, hypertensive, agitated, big pupils, dry mucous membranes, normal reflexes
 - Diagnosis?

Case 4 Mad as a Hatter

- Anticholinergic toxidrome
 - Mad as a Hatter, Dry as a Bone, Seizing like a squirrel, Tacky as a Pink Flamingo...

Review the medication list

 Anticholinergic stacking: Chlorpromazine, Diphenhydramine (Benedryl)

Anticholinergic Toxidrome Treatment

- Good supportive care
 - Agitation benzodiazapines, paralyze
 - Seizures benzodiazapines, paralyze
 - Hyperthermia benzodiazapines, paralyze

Physostigmine

- Reversible cholinesterase inhibitor
- Risk of seizures & dysrhythmias

Anticholinergic toxidrome

- Some antipsychotics have high affinity for central muscarinic receptors
- Check medication list for drug-drug interactions

Summary

- Hyperthermia can be induced by different toxins through different mechanism
- High index of suspicion is a key for reaching a timely diagnosis

