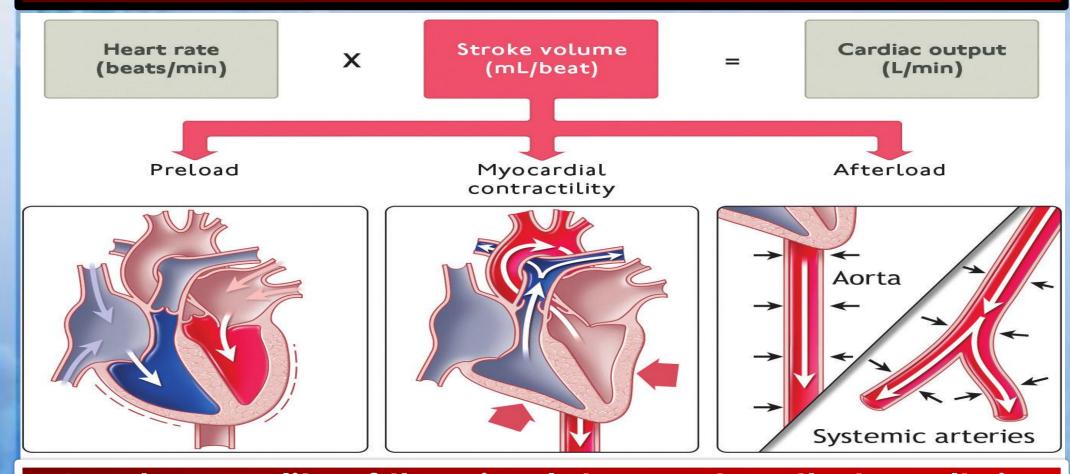

Updates in Shock Management in Trauma


Dr. Behcet Al University of Gaziantep/Turkey, 2018

Timing Distribution of Trauma Deaths Compared With the Historical Trimodal Distribution

The definition of shock

An abnormality of the circulatory system that results in inadequate organ perfusion and tissue oxygenation

In initial management

The first step:

> Is to recognize presence of shock.

The second step:

Identify the probable cause and adjust treatment accordingly.

> The primary and secondary surveys, usually provides sufficient information to determine the causes.

Diagnosis of shock can be missed when only a single parameter is used.

- ❖Heart rate,
- ❖Blood pressure,
- Skin perfusion,
- ❖ Mental status
- Arterial blood gas measurements of pH, pO2, PCO2,
- Oxygen saturation,
- ❖Base deficit,
- ❖ End-tidal CO2,
- ❖Serum lactate

Sources of potential blood loss must be quickly assessed by physical examination and appropriate adjunctive studies

Hemorrhage is the most common cause of shock in trauma patients.

- Soft tissue injury, even without severe hemorrhage, can result in shifts of fluid to the extracellular compartment.
- The response to blood loss must be considered in the context of these fluid shifts.

The priority of initial management

Identify evidence of adequate end-organ perfusion and tissue oxygenation

Organ dysfunction	↓ Perfusion	↓↓ Perfusion	↓↓↓ Perfusion	
CNS		Restless, apathetic, anxious	Agitated/confused, coma	
Respiration	s 	↑ Ventilation	↑↑ Ventilation	
Metabolism		Compensated metabolic acidemia	Uncompensated metabolic acidemia	
Gut		↑ Motility	lleus	
Kidney	Decreased urine volume	Oliguria < 0.5 mL/kg/hr	Oliguria/anuria	
	Increased specific gravity			
Skin	Delayed capillary refill	Cold extremities	Mottled, cyanotic, cold extremities	
cvs	Increase heart rate	2* increase HR	2* increase HR	

Achieving a normal BP is not a substitute for definitive control of bleeding.

TABLE 3-2 RESPONSES TO INITIAL FLUID RESUSCITATION^a

	RAPID RESPONSE	TRANSIENT RESPONSE	MINIMAL OR NO RESPONSE
Vital signs	Return to normal	Transient improvement, recurrence of decreased blood pressure and increased heart rate	Remain abnormal
Estimated blood loss	Minimal (<15 %)	Moderate and ongoing (15%–40%)	Severe (>40%)
Need for blood	Low	Moderate to high	Immediate
Blood preparation	Type and crossmatch	Type-specific	Emergency blood release
Need for operative intervention	Possibly	Likely	Highly likely
Early presence of surgeon	Yes	Yes	Yes

^a Isotonic crystalloid solution, up to 1000 mL in adults; 20 mL/kg in children

Damage Control Resuscitation

Balancing the goal of organ perfusion and tissue oxygenation

- >Controlled resuscitation,
- > Balanced resuscitation,
- >Hypotensive resuscitation,
- > Permissive hypotension

TABLE 3-1 SIGNS AND SYMPTOMS OF HEMORRHAGE BY CLASS

PARAMETER	CLASS I	CLASS II (MILD)	CLASS III (MODERATE)	CLASS IV (SEVERE)
Approximate blood loss	<15%	15–30%	31–40%	>40%
Heart rate	\leftrightarrow	↔/↑	↑	↑/↑↑
Blood pressure	\longleftrightarrow	\longleftrightarrow	↔/↓	↓
Pulse pressure	\leftrightarrow	1	↓	↓
Respiratory rate	\longleftrightarrow	\longleftrightarrow	↔/↑	↑
Urine output	\leftrightarrow	\leftrightarrow	↓	↓ ↓
Glasgow Coma Scale score	\longleftrightarrow	\longleftrightarrow	↓	↓
Base deficit ^a	0 to -2 mEq/L	-2 to -6 mEq/L	-6 to -10 mEq/L	–10 mEq/L or less
Need for blood products	Monitor	Possible	Yes	Massive Transfusion Protocol

^a Base excess is the quantity of base (HCO₃-, in mEq/L) that is above or below the normal range in the body. A negative number is called a base deficit and indicates metabolic acidosis.

Data from: Mutschler A, Nienaber U, Brockamp T, et al. A critical reappraisal of the ATLS classification of hypovolaemic shock: does it really reflect clinical reality? Resuscitation 2013,84:309–313.

- > Permissive Hypotension
- > Hypovolemic Fluid Resuscitation
- > Hypotensive Resuscitation

Fluid Restrictive Did Better

If you got fluids:

- > SBP higher on ED arrival
- > Same for OR arrival
- > Hct lower on ED & OR arrival

- > Survival: 62% vs 70%
- > Complications: 30% vs 23%

Why are fluids bad?

- ✓Increase venous pressures → clot dislodges
- ✓ Dilutes clotting factors
- √ Cause hypothermia
- ✓ Volume overload → ARDS, compartment syndrome, edema

Hypotension is not the goal

Current Recommendations

- Permissive Hypotension is endorsed by US military (goal SBP 70)
- > Vague elsewhere: Goal MAP 40-50, SBP of 80
- A COMPROMISE between maintaining perfusion & avoiding negative effects of IVF boluses

a more "balanced" approach toward crystalloid infusion

Advanced Trauma Life Support Outdated dogma & rectal exams forever.

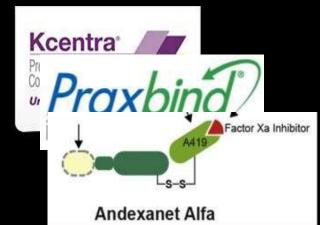
- > "therapeutic decisions based on response to initial fluid resuscitation,"
- > Strongly suggests early hemorrhage control and blood product transfusion
- > But still says 1-2L of NS before definitive bleeding control

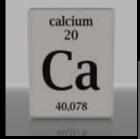
American College of Surgeons Committee on Trauma

#2: Hemostatic Resuscitation

1: Give Blood Early

2: Resemble Whole Blood




3: Anticipate & Prevent Coagulopathy

4: Reverse Known Coagulopathy

5: Treat Complications

ABC > 2

Penetrating Mechanism

ED SBP < 90 mmHg

ED HR > 120

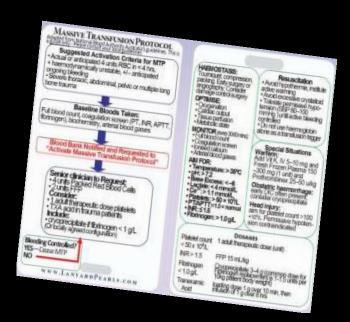
Positive FAST

SI>1

HR 80, SBP 120 80/120 = 0.66

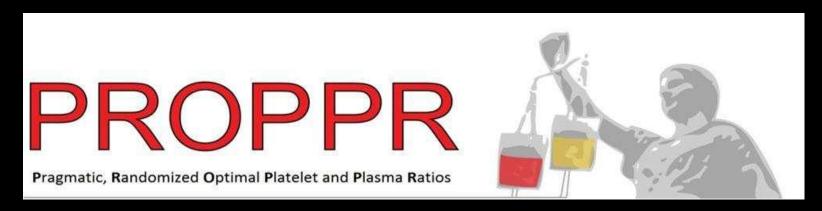
HR 100, SBP 100 100/100 = 1.0

HR 120, SBP 80 120/80 = 1.5


HEART RATE

SBP

Do you have an MTP?


What is it?

Why 1:1:1?

Observational, Multicenter -> Higher Plasma & Platelet ratios improved mortality

RCT, Multicenter → RBC:FFP:Platelets 1:1:1 vs 1:1:2

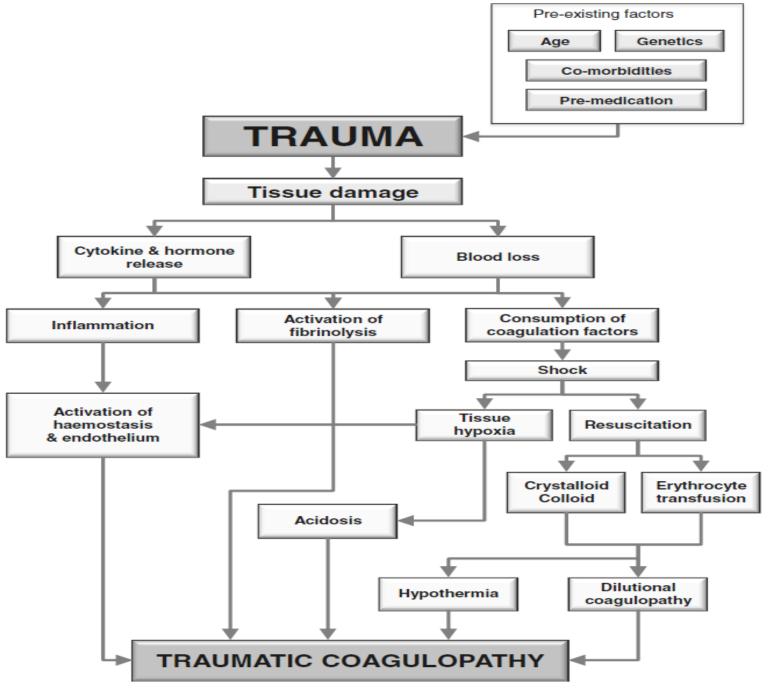
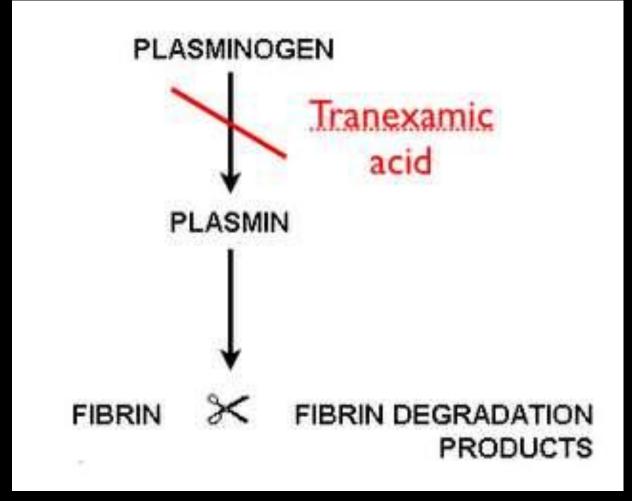



Fig. 1 Schematic drawing of the factors, both pre-existing and trauma-related, that contribute to traumatic coagulopathy. Adapted from [18, 19, 34]

Step 3: Anticipate & Prevent Coagulopathy

Up to 30% of severely injured on admission,

The Evidence

CRASH-2: RCT, TXA vs placebo

MATTERs: retrospective observational, TXA v none

MATTERS2: retrospective observational, added cryo

Dose: TXA loading dose 1 gram/10 min then infusion 1 gram/8 hours

2013 Survey: 49% of Trauma Centers Use TXA with MTP

Thromboelastography (TEG) and Rotational thromboelastometry (ROTEM)

Say Yes to the TEG?

Step 4: Reverse Known Coagulopathy

Coumadin:

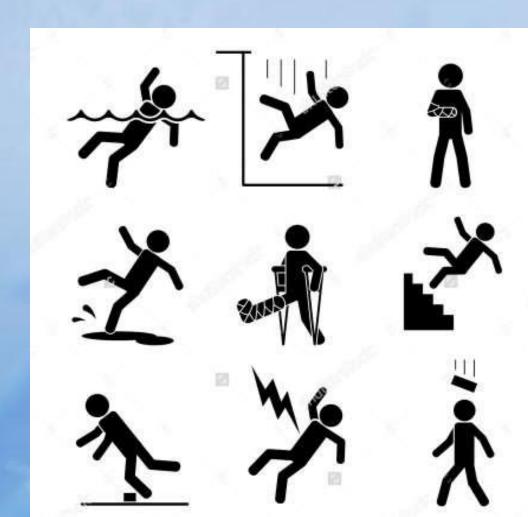
→ kCentra

NOACs:

- Direct thrombin inhibitor (Dabigatran/Pradaxa)→Praxbind
- Factor Xa inhibitors (Rivaroxaban/Xaralto, Apixiban/Eliquis) → Andexanet alfa

Post-tPa:

- → cryo & platelets or RiaSTAP (fibrinogen) *Aspirin:*
- → Platelets or DDAVP


Step 5: Avoid Complications

- TACO (transfusion associated circulatory overload)
- TRALI (Transfusion-related acute lung injury)
- Hypocalcemia (Usually not necessary, When necessary, use ionized ca)
- > Hypothermia
- > Over-transfusion
- The Regular Stuff (Cross-Matching, Allergies, Infection)

In Summary

Damage Control Resuscitation → less fluids, more factors, maybe TEG

- 1. Permissive Hypotension
- 2. Hemostatic Resuscitation
- > Early blood
- ➤ 1:1:1
- Anticipate & Treat Coagulopathy
- Reverse Known Coagulopathy
- >Awareness of Complications
- 3. Damage Control Surgery

