Carbon Monoxide Poisoning

Evvah Karakılıç, MD.

Carbon monoxide

- Carbon monoxide (CO) is a colorless, odorless and tasteless gas.
- The atmospheric concentration of CO is generally very low
 - Below 0.001%
 - 10 ppm
- It may be higher in urban areas

Carbon monoxide

- CO binds to hemoglobin in plasma forming carboxyhemoglobin (COHb)
- COHb level in blood;
 - Nonsmokers = 1-2 %
 - Smokers = 5-10 %

Epidemiology

- 16449 hospital admission with CO poisoning was stated in America in 2005
- 66 of them was resulted with death*
- Unintended poisoning is most common during the winter months

*Lai MW, Klein-Schwartz W, Rodgers GC, et al: 2005 Annual Report of the American Association of Poison Control Centers' national poisoning and exposure database. *Clin Toxicol (Phila)* 44: 803, 2006.

Epidemiology

- The most common causes of CO poisoning;
 - Smoke inhalation
 - Poorly functioning heating systems
 - Charcoal grills, camping stoves
 - Improperly vented fuel-burning devices
 - Gasoline-powered electrical generators
 - Motor vehicles operating in poorly ventilated areas
 - Exposure to exhaust
 - Living near the roads
 - Cigarette smoke

Epidemiology

- Methylene chloride (dichloromethane) is an industrial solvent
 - Metabolized to CO by the liver

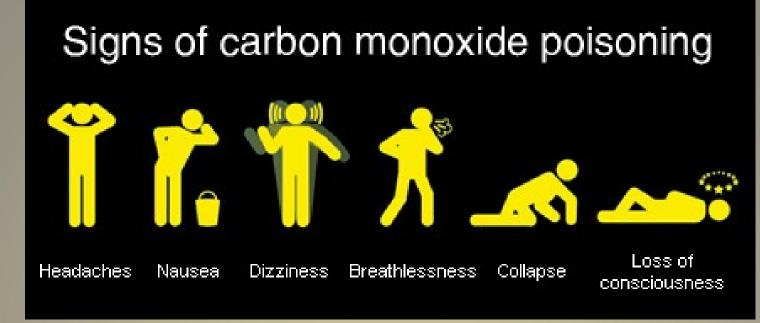
- Carbon monoxide (CO) diffuses rapidly across the pulmonary capillary membrane
- CO binds to the hemoglobin (COHb)
 - 240 times the affinity of oxygen
- Once CO binds to the "heme" moiety of hemoglobin, an allosteric change occurs that greatly reduces oxygen binding
 - Diminishes the ability of the other three oxygen binding sites
- This results in an impairment in tissue oxygen delivery

- CO interferes with peripheral oxygen utilization.
- In extravascular area, CO bound to molecules such as myoglobin, cytochromes, and NADPH reductase.
- CO is bound to these molecules longer than that of COHb.
- As a result, oxidative phosphorylation is impaired at the mitochondrial level.

- CO also interferes with peripheral oxygen utilization by inactivating cytochrome oxidase in a manner similar to, but clinically less important than, cyanide.
- Combined effects of CO and cyanide on oxygen transport and utilization appear to be synergistic.

- Delayed neurologic sequelaes (DNS),
 - It cause lipid peroxidation
 - Perivascular oxidative stress in the brain leads to neuronal cell loss
 - It is thought that, during recovery from CO exposure, events analogous to ischemia-reperfusion injury and exposure to hyperoxia may exacerbate the initial oxidative damage
 - Glutamate increases in brain after CO poisoning resulting in intracellular calcium release and delayed neuronal cell death

Kinetics


- The half-life of CO,
 - While patient is breathing room air is approximately 300 minutes
 - While breathing high-flow oxygen via a nonrebreathing face mask is about 90 minutes
 - With 100% hyperbaric oxygen is 30 minutes.

Clinical Presentation

- The clinical findings of carbon monoxide (CO) poisoning are highly variable
- The most common symptom is headache
- Other signs and symptoms
 - Nausea
 - Vomitting
 - Visual blurred
 - Ataxia
 - Dizziness

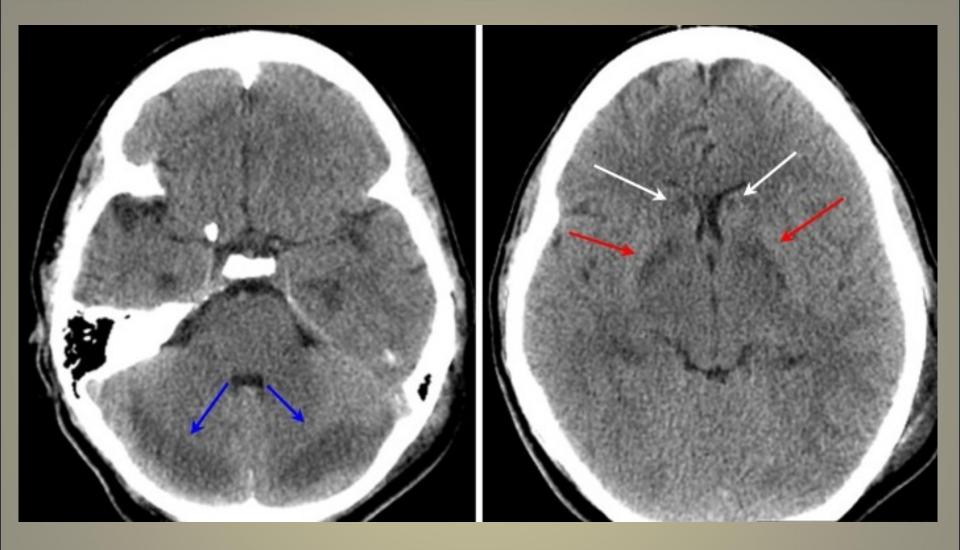
Clinical Presentation

- May be misdiagnosed with acute viral syndromes
- CO poisoning may imitate food poisoning in the presence of vomitting

- Nausea
- Vomiting
- Ataxia
- Dizziness
- Confusion
- Syncope

Web page: https://www.google.com/search?

- Chest pain
- Dyspnea
- Seizure
- ECG changes
- Visual blurred
- Focal neurologic deficit


hl=en&site=imghp&tbm=isch&source=hp&biw=1280&bih=675&q=carbon+monoxide+poisoning&oq=carbon+mon&gs_l=img.1.2.0l10.2737.6138.0.8407.10.10.0.0.0.191.1211.2j8. 10.0...0...1ac.1.7.img.Ab-A4fhJEms#imgrc=26Sn2DO3HLIScM%3A%3B6ojFs85kqC5IcM%3Bhttp%253A%252F%252Fwww.theaa.com%252Fresources%252Fimages %252Farticle-detail%252Finsurance%252Fcarbon-monoxide-gas-safety.gif%3Bhttp%253A%252F%252Fwww.theaa.com%252Finsurance%252Fcarbon-monoxide-gas-safety.html %3B440%3B200

Myocardial injury

- Acute myocardial injury is common among CO-poisoned patients
- In chronic exposure to CO a greater frequency of premature ventricular contractions is observed during exercise
- Acute exposure to CO usually results in ventricular dysrhythmias and ischemic symptoms

CNS injury

- The most sensitive organ to CO poisoning is CNS
- In low COHb levels headache, dizziness and ataxia are seen
- In chronic exposure to CO syncope, seizure and coma are seen
 - The EEG can show diffuse frontal slow-wave activity
 - The CT scan can show decreased density in the central white matter and globus pallidus

Web Page: http://www.learningradiology.com/caseofweek/caseoftheweekpix2006/cow232arr.jpg

Other clinical sign

- Cardiogenic pulmonary edema may occur
 - In severe cases
- Retinal hemorrhage
 - Exposure longer than 12 hours
- Cherry red skin
 - Rare in alive patients
- Development of cutaneous bullae
 - Thought to be caused by a combination of pressure necrosis and possibly direct CO effects in the epidermis

Delayed neurologic effects

- A syndrome of delayed neurologic sequelae (DNS) can arise 3 to 40 days after apparent recovery
 - Dementia
 - Amnestic syndromes
 - Psychosis
 - Parkinsonism
 - Paralysis
 - Chorea
 - Cortical blindness
 - Peripheral neuropathy
 - Incontinence

Delayed neurologic effects

- 14% of severely poisoned survivors had permanent neurologic impairment.
- Most cases of delayed neurologic sequelae are associated with loss of consciousness in the acute phase of toxicity.
- In this patients have lesions of the cerebral white matter and basal ganglia.

- The most useful diagnostic test for suspected CO poisoning is the COHb level
- Normal COHb levels range from 0-5%.
 - CO is a natural byproduct of the breakdown of protoporphyrin to bilirubin
 - In neonates
 - High levels may be seen in hemolytic anemia
 - COHb levels in 1-pack-per-day smokers can be 6-10%
 - COHb can be zero if the patient was treated with oxygen prior to the blood test

- COHb level
 - Arterial or venous sample
 - Spectrophotometrically could be read from finger (pulse oximeter)
 - COHb level could be lower incorrectly on hydroxycobalamine treatment
- Directly blood CO level could be measured
 - Plasma CO level 1mmol/L \rightarrow COHb level 11%

- Arterial blood gas should be evaluated to detect metabolic acidosis
- Plasma pH isn't correlated with COHb level and neurologic examination
- Plasma pH isn't a criteria for oxygen therapy and neurologic sequele
- In severe poisoning plasma lactate level can increase

- ECG should be performed to determine cardiac effects
 - Ischemia and dysrhytmia should be investigated
- Troponin levels can increase due to cardiac impairment
- Mild elevations of creatine phosphokinase usually result from rhabdomyolysis rather than cardiac sources

- New markers are researched because COHb level isn't correlated with clinics and insufficient for results
 - Rats have early increases in glutathione release from erythrocytes*.
 - Serum S100B is increased due to hypoxic stress**.

*Thom SR, Kang M, Fisher D: Release of glutathione from erythrocytes and other markers of oxidative stress in carbon monoxide poisoning. J Appl Physiol 1997;82:1424-32. **Bottiger BW, Mobes S, Glatzer R, et al: Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 2001;103:2694-98.

- Neuropsychological Testing;
 - A normal neurologic examination with a quick minimental status examination.
 - Mini-memory test can be applied
 - These test are usefull to specify the need to hyperbaric oxygen therapy

Neuroimaging

- Acute changes on CT scan of the brain occur within 12 hours of CO exposure that resulted in loss of consciousness
- In a series of 18 patients, a negative CT within 1 week of admission was associated with favorable outcome.*

* Zeiss J, Brinker R: Role of contrast enhancement in cerebral CT of carbon monoxide poisoning. J Comput Assist Tomogr 1988;12:341-43

Neuroimaging

- Assessing regional cerebral perfusion
 - SPECT (Single-photon emission computed tomography) showes hypoperfusion in patients with neurologic sequele*.
- PET (Positron emission tomography) can be used for assessing regional blood flow and oxygen metabolism
 - PET examination after HBO treatment showed increased oxygen extraction and decreased blood flow in the brain**

*Denays R, Makhoul E, Dachy B, et al: Electroencephalographic mapping and Tc HMPAO single-photon emission computed tomography in carbon monoxide poisoning. Ann Emerg Med 1994;24:947-52 **De Reuck J, Decoo D, Lemahieu I, et al: A positron emission tomography study of patients with acute carbon monoxide poisoning treated by hyperbaric oxygen. J Neurol 1993;240:430-4.

Management

- The main treatment is giving 100% oxygen
 - With non-rebrating mask (90 min)
- Comatose patients, or those with severely impaired mental status, should be intubated
 - 100% oxygen
- For patients suffering from CO poisoning after smoke inhalation, it is important to consider concomitant cyanide toxicity

Management

- Most symptoms resolve with high-flow oxygen
- Non-rebreather mask delivers 70-90% oxygen
- A positive pressure mask or an endotracheal tube is necessary to achieve higher oxygen concentrations

- HBO therapy appears to be the treatment of choice for patients with significant CO exposures.
- At 2.5 atmospheres absolute (ATA), the halflife of COHb is reduced to 20 minutes.
- Despite the uncertainty in benefit from HBO treatment, a broad set of recommendations has been established for therapy of CO poisoning

- HBO therapy criteria;
 - COHb > 25%
 - Syncope
 - Coma
 - Altered mental status or confusion
 - Seizure
 - Neurologic deficit (Abnormal cerebellar examination)
 - Evidence of acute myocardial ischemia
 - Fetal distress in pregnancy

- The COHb level at which HBO should be performed is controversial.
- Many toxicologists recommend HBO when the COHb level is greater than 25% whereas some societies use 40%

- HBO should be initiated within 6 hours.
- Benefit for patients treated more than 12 hours after their CO exposure is unproven.
- Patients should have at least one session of HBO at 2.5 - 3.0 atm.
- Duration changes according to condition
 - 45-300 min
 - New sessions can be applied untill symptoms recruit

HBO and Delayed neurologic effects

- Hyperbaric oxygen therapy (HBO) may be beneficial in treating the late neurocognitive deficits associated with severe CO intoxication.*
- If applied in the first 6 hours, nearly all of the neurologic sequele recover.
- Also beneficial in the first 24 hours
- There are surveys that shows that HBO isn't beneficial.**

^{*}Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2002; 347:1057. **Scheinkestel CD, Bailey M, Myles PS, et al. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial. Med J Aust 1999; 170:203.

Hyperbaric oxygen

- Underwater and Hyperbaric Society Guide
 - HBO therapy is suggested in CO poisoning
 - The optimal number of HBO treatments for CO poisoning is unknown at this time
 - Multiple treatments should be reserved for patients who do not fully recover after one treatment

Isocapnic hyperpnea

- An intubated patient is hyperventilated with a normobaric mixture of oxygen and a small amount of CO2.
- Maintaining a PaCO2 of approximately 40 mmHg despite a sixfold increase in minute ventilation.
- Application of this technique in an animal model more than doubled the rate of CO elimination compared with conventional ventilation with 100% oxygen.*

*Fisher JA, Rucker J, Sommer LZ, et al. Isocapnic hyperpnea accelerates carbon monoxide elimination. Am J Respir Crit Care Med 1999; 159:1289.

Treatment of Pregnant Patients

- Fetal hemoglobin had a high affinity for CO
- COHb levels in the fetus exceeding the level and duration of that in the mother
- Elimination of CO from the fetus takes 3.5 times longer than maternal CO elimination
- After all, Intrauterine hypoxia and brain injuri may be develop

Treatment of Pregnant Patients

- Pregnant patients should be treated with HBO regardless of symptoms
 - COHb levels >15% (some authors)
 - COHb levels >20%
- Additional criteria include any signs of fetal distress

Treatment of Children

- Children are more sensitive to the effects of CO, because of their increased metabolic rate.
- Children can become symptomatic at COHb levels <10%
- They may have unusual presentations
- COHb levels in infants may be high
 - many cooximeters can give falsely elevated COHb levels due to fetal hemoglobin
 - CO is produced during breakdown of protoporphyrin to bilirubin. It is may be high with precence of kernicterus

Treatment of Children

 Delayed neurologic sequela in children are observed less than in adults

Neuroprotective Treatments

- Hyperglycemia has been shown to exacerbate neuronal injury from stroke and during arrest situations.
- In rodent studies, Hyperglycemia increases neuronal injury.*
- In light of these findings, it may be benifical to treat hyperglycemia with insulin.

*White SR, Penney DG: Effects of insulin and glucose treatment on neurologic outcome after carbon monoxide poisoning. Ann Emerg Med 1994;23:606.

Neuroprotective Treatments

- Blockage of excitatory amino acids that are implicated in neuronal cell death
- Dizocilpine which blocks the action of glutamate at NMDA receptors
- In light of these findings, it ameliorates learning and memory.*

*Ishimaru H, Katoh A, Suzuki H, et al: Effects of *N-methyl-D-aspartate receptor* antagonists on carbon monoxideinduced brain damage in mice. J Pharmacol Exp Ther 1992;261:349-52.

Neuroprotective Treatments

 Ketamine, another glutamate antagonist and shown beneficial effects.*

*Penney DG, Chen K: NMDA receptor-blocker ketamine protects during acute carbon monoxide poisoning, while calcium channel-blocker verapamil does not. J Appl Toxicol 1996;16:297-304.

Prevention

• Home carbon monoxide (CO) dedectors with alarms may be life-saving.

Thanks