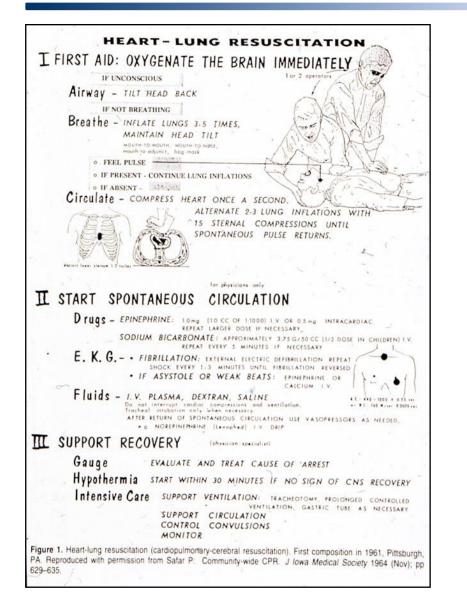


PATIENT COOLING PRE- & IN-HOSPITAL PRACTICAL INSIGHTS

Patient data*

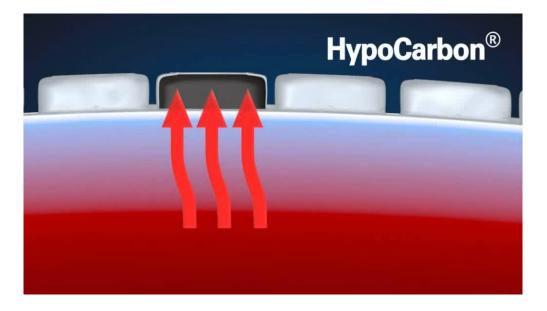

- 7.030 patients without signs of circulation (206/100,000/year)
- 1.448 resuscitation attempts by the Vienna Ambulance Service
- 361 patients with sustained ROSC (25%)
- 164 (11.3%) discharged
- 126 (8.7%) with good outcome / CPC 1-2
- * * 2009-2010

Out of Hospital Cardiac Arrest in Vienna: Incidence and Outcome. Nürnberger et al. Resuscitation 2013

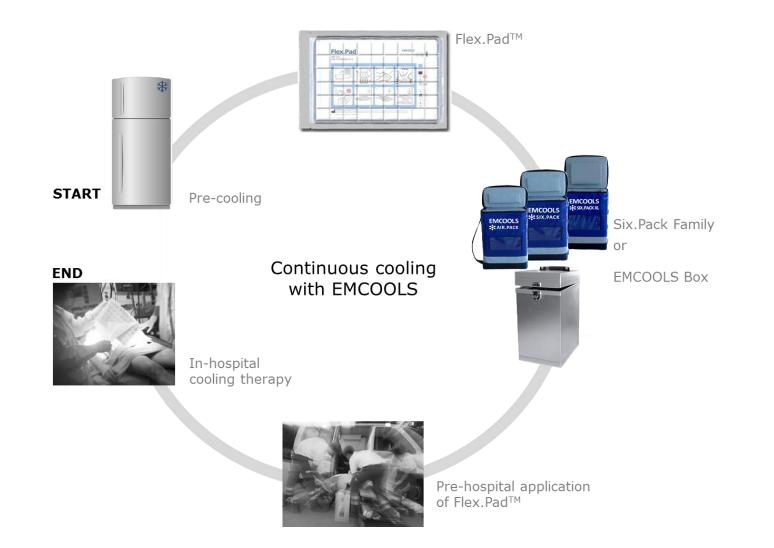
VIENNA – A SHORT STORY OF COOLING

VIENNA RESUSCITATION APPROACH

PREHOSPITAL COOLING



EMCOOLS FLEX.PAD HYPOCARBON [®]


- * Cooling rates of up to 3.3°C/h
- * Biocompatible material (skin- and environmentally friendly, non-toxic)

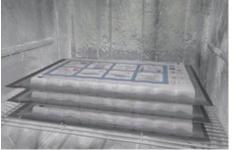
EMCOOLS FLEX.PAD

CONTINUOUS COOLING CHAIN

EMCOOLS FLEX.PAD PREPARATION

Preparation

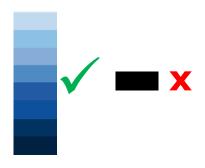
- * Remove transportation- and storage box
- In Freeze Flex.Pad[™] at -8 to -11°C horizontally
- Note: This temperature range reflects a pre-cooling phase of 48h (during first-time freezing)


2) Operational readiness

- Ready to use pads are indicated by a blue color indicator label
- * If the pad is too cold the label turns black

Application

- * Take out ready to use Flex.Pad[™] (blue color indicator label)
- \ast Open packaging, remove protective foil and apply immediately on dry skin
- * **Note:** For activating the adhesive press down
 - evenly for 3-5 seconds



Х

INITIAL SITUATION - OUT-OF-HOSPITAL CARDIAC ARREST

PRE-HOSPITAL TREATMENT (1/30/2015)

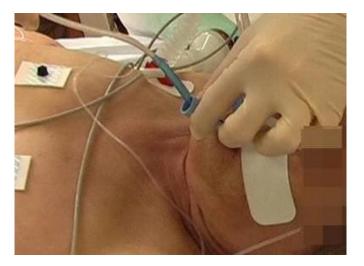
- * 16:25 69 year old male, loses consciousness in public bus
- * 16:26 Emergency call & start bystander basic life support
- * 16:33 Arrival of Vienna Ambulance Service & advanced cardiac life support
 - \rightarrow Ventricular fibrillation as initial rhythm
 - \rightarrow 6 mg epinephrine , 300 mg amiodarone
 - \rightarrow 6 defibrillations
- * 16:46 → ROSC
- * Application of Flex.Pad at an initial temperature of 35.3°C

EMCOOLS

EASY

© EMCOOLS

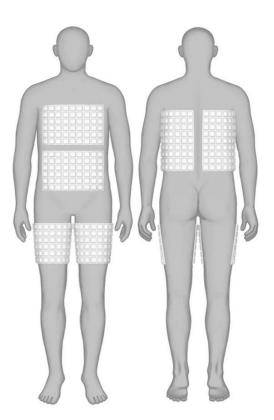
PRE-HOSPITAL START WITH FLEX.PAD


1. Sedation, analgesia and paralysis

- * Midazolam 10 mg
- * Fentanyl 0.1 mg
- * Atracurium 25 mg
- * Bolus administered every 30 min

2. Continuous temperature monitoringEsophageal temperature probe (inserted by a tubus)

3. Can be used on top of defibrillator pads


APPLICATION

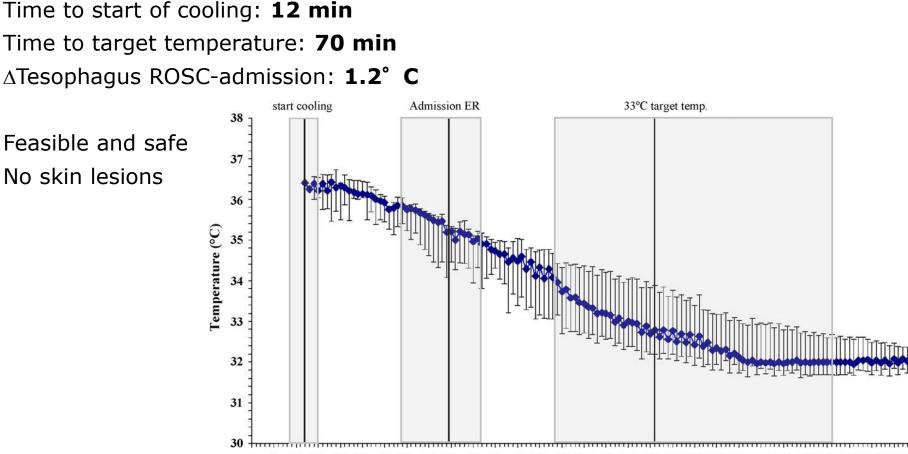
Flex.Pads are applied by the first responders

- * 1 pad on the chest (not on female breast tissue)
- * 2 pad on the back
- * 1 pad on the abdomen
- * 1 pad per tigh
- \rightarrow The application procedure takes about 8 minutes

Rule-of-thumb

* 1 Flex.Pad per 10 kg body weight

Notes


- * Don't apply on face, toes, fingers, genital region, female breast tissue or pregnant
- * Don't apply in case of skin diseases, inflammation, burns or any other skin injuries
- * During treatment skin temperature does not drop below 4 to 8°C

PRE-HOSPITAL COOLING CLINICAL DATA

15 patients after cardiac arrest



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 Out-of-hospital surface cooling to induce mild hypothermia in human candia quarifyest. Uray et al. Resuscitation 2008.

EMCOOLS

INITIAL SITUATION - OUT-OF-HOSPITAL CARDIAC ARREST

30. Jan. 2015 18:05:00

25mm/s 10mm/mU ADS

50Hz

25mm/s 10mm/mU ADS

30. Jan. 2015 18:05:00

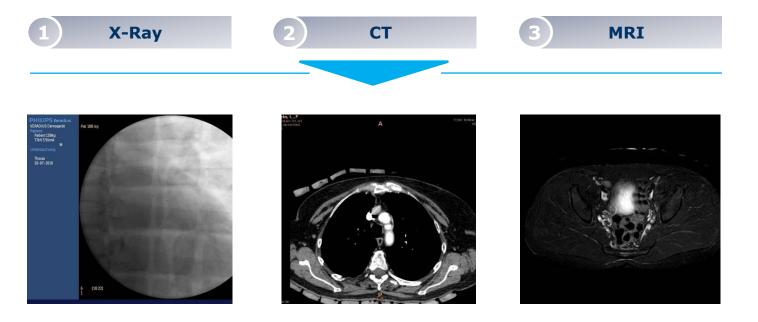
IN-HOSPITAL CONTINUATION / CATH LAB

CATH LAB (1/30/2015)

- * 17:16 Arrival at Cath Lab (Cardiology, Hanusch Hospital)
- * PTCA and two stents into circumflex artery

→ All Flex.Pads are to be removed at 34°C

 \rightarrow Temperature on arrival: 33.8°C \rightarrow Initial phase already completed


EMCOOLS

EASY EFFICIENT

CATH LAB – ANGIOGRAPHY DURING COOLING

 \rightarrow Pads are radiolucent

* Good data on safety and feasibity of cooling during angiography, X-Ray, CT, and MRI

EMCOOLS

EASY EFFICIENT PATIENT

IN-HOSPITAL CONTINUATION / CARDIAC CARE UNIT

CARDIAC CARE UNIT (1/30/2015)

- * 18:05 Arrival at the CCU
- \rightarrow Maintenance and rewarming

Therapeutic Hypothermia at 33°±1°C for 24 hours (1/30/2015 – 1/31/2015)

- Continuous temperature monitoring by esophageal and bladder temperature probes (used simultaneously)
- * Continuous administration of analgo-sedation and paralytics (standard medication)

EMCOOLS

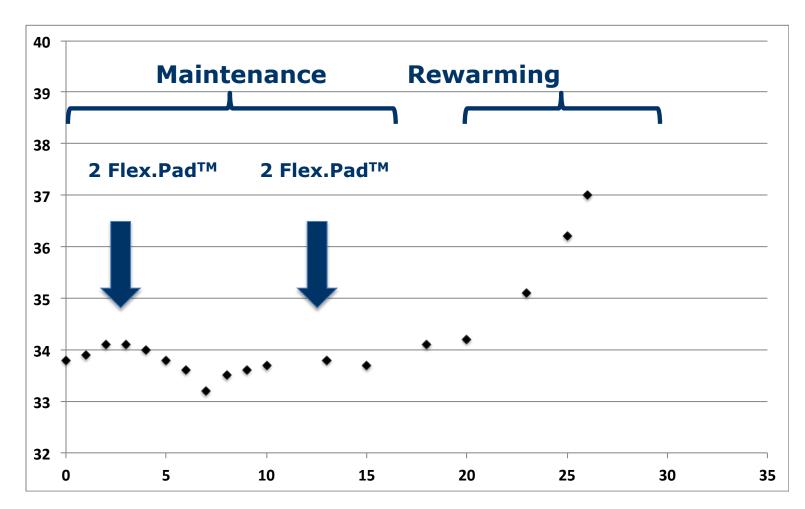
EFFICIENT

IN-HOSPITAL CONTINUATION / CARDIAC CARE UNIT

Maintenance at 33-34°C

* 2 Flex.Pad reapplied twice to maintain the targeted temperature range

Passive Rewarming to 37°C


- * Patient only covered by a regular blanket
- * Target is rewarming to 37°C in about 8 hours, at a rewarming rate of 0.4°C/h
- * At 37.0°C all medication is stopped

EMCOOLS

EASY

IN-HOSPITAL CONTINUATION / CARDIAC CARE UNIT

Maintenance and Rewarming (1/31/2015)

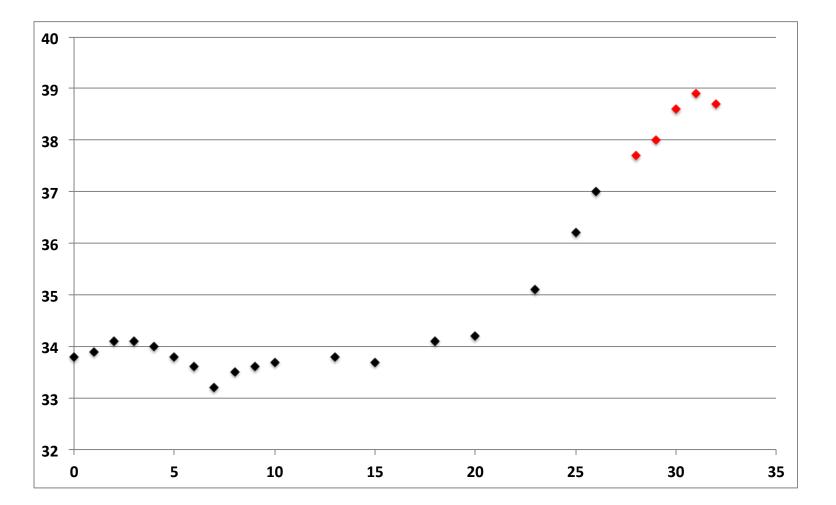
EMCOOLS

IN-HOSPITAL CONTINUATION / CARDIAC CARE UNIT

CCU (1/31/2015 - 2/02/2015)

Normothermia

* 37.0°C for day two and three (until 72 hours after cardiac arrest)


Fever control

- * Paracetamol, Novalgin
- * EMCOOLS Flex.Pad[™] or other form of active temperature control

EMCOOLS

EASY

IN-HOSPITAL CONTINUATION / CARDIAC CARE UNIT

EMCOOLS

EASY EFFICIENT PATIENT COOLING

EXAMINATIONS & FURTHER TREATMENT OF SEPSIS / PNEUMONIA

CCU 2/04/2015

Chest x-ray

- * Unremarkable, but putrid secretions from suctioning
- * Started Amoxi/Clav, changed to Moxifloxacillin, finally Merpoenem/Linezolid
- * Tracheal secretions
- * Pseudomonas aeruginosa,
- * Citrobacter freundii
- → Pneumonia and sepsis

EMCOOLS

EASY EFFICIENT

SIDE EFFECTS - RISK OF INFECTION

Therapeutic Hypothermia and the Risk of Infection:

* A Systematic Review and Meta-Analysis; Geurts et al, CCM 2013

Objectives

* Systematic review and meta-analysis of randomized trials to examine the risk of infections in patients treated with hypothermia

Results

- * 23 studies, 2820 patients, 1396 cooled patients
- * Cooling for several hours-days (prodecures, cardiac arrest, TBI, stroke)

THERAPEUTIC HYPOTHERMIA SIDE EFFECTS - RISK OF INFECTION

Findings

All infections: no increased risk

Risk of pneumonia ↑ (risk ratio 1.44 [95% CI, 1.10–1.90])

Risk of sepsis ↑ (risk ratio 1.80 [95% CI, 1.04–3.10])

Overall prevalence of sepsis was low.

	Hypothe	rmia	Cont	lo		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Pneumonia								
Shiozaki 1993	6	9	9	13	7.9%	0.96 [0.54, 1.73]	1993	
Clifton 1993	9	24	7	22	5.2%	1.18 [0.53, 2.62]		
Shiozaki 1999	5	8	1	8	1.1%	5.00 [0.74, 33.78]		
Hindman 1999	1	53	3	56	0.8%	0.35 [0.04, 3.28]		
Jiang 2000	16	43	14	44	8.0%	1.17 [0.65, 2.09]		
Shiozaki 2001	21	43	6	40	5.2%	3.26 [1.46, 7.24]		
HACA 2002	50	135	40	137	13.5%	1.27 [0.90, 1.78]		
Hashiguchi 2003	5	9	0	8	0.6%	9.90 [0.63, 155.08]		
De Georgia 2004	2	18	1	21	0.8%	2.33 [0.23, 23.66]		
Todd 2005	7	499	7	502	3.4%	1.01 [0.36, 2.85]		
Liu 2006	8	21	8	23	5.3%	1.10 [0.50, 2.39]		
Qiu 2007	23	40	13	40	9.1%	1.77 [1.05, 2.98]		
Weber 2008	2	22	4	22	1.6%	0.50 [0.10, 2.45]		
Lee 2010	4	15	4	16	2.7%	1.07 [0.32, 3.52]		
Gotberg 2010	3	9	0	9	0.5%	7.00 [0.41, 118.69]		
Hemmen 2010	14	28	3	30	2.9%	5.00 [1.61, 15.57]		
Subtotal (95% CI)	A.C.M	976		991	68.7%	1.44 [1.10, 1.90]		•
Total events	176		120					
Heterogeneity: Tau ² =	0.08; Chi ^a	= 22.0	9, df = 15	(P = 0.	11); I= 3	2%		
Test for overall effect								
Urinary tract i	nfection							
Jiang 2000	16	43	15	44	8.3%	1.09 [0.62, 1.92]	2000	
De Georgia 2004	1	18	4	21	0.9%	0.29 [0.04, 2.38]	2004	
Todd 2005	15	499	18	502	6.6%	0.84 [0.43, 1.64]	2005	
Weber 2008	0	22	4	22	0.5%	0.11 [0.01, 1.95]	2008	+
Lee 2010	3	15	4	16	2.2%	0.80 [0.21, 3.00]		
Stone 2011	1	58	3	70	0.8%	0.40 [0.04, 3.76]	2011	
Subtotal (95% CI)		655		675	19.4%	0.86 [0.58, 1.28]		•
Total events	36		48					
Heterogeneity: Tau ² :	= 0.00; Chi ^a	= 4.37	df = 5 (P	= 0.50); 1= 0%			
Test for overall effect	Z = 0.75 (F	P = 0.45	5)					
Sepsis								
Clifton 1993	9	24	4	22	3.5%	2.06 [0.74, 5.75]	1993	
HACA 2002	17	135	9	138	5.4%	1.93 [0.89, 4.18]	2002	
Todd 2005	5	499	3	502	1.9%	1.68 [0.40, 6.98]	2005	
Els 2006	0	12	0	13		Not estimable	2006	
Lee 2010	1	15	1	16	0.6%	1.07 [0.07, 15.57]	2010	
Stone 2011	0	58	1	70	0.4%	0.40 [0.02, 9.66]	2011	
Subtotal (95% CI)		743		761	11.9%	1.80 [1.04, 3.10]		-
Total events	32		18					
Heterogeneity: Tau ² = Test for overall effect				= 0.89); l² = 0%			
Total (95% CI)		2374		2427	100.0%	1.31 [1.07, 1.62]		•
Total events	244		186					
Heterogeneity: Tau ² = Test for overall effect	Z = 2.56 (F		8, df = 26)			1%		0.01 0.1 10 100 Hypothermia decreases Hypothermia increases

© EMCOOLS

THERAPEUTIC HYPOTHERMIA SIDE EFFECTS - RISK OF INFECTION

Conclusio

- * Lack of definition of infections
- * Assessment of infections not blinded
- * Only one cardiac arrest study included
- * Take-home-message: high alertness towards signs of infection

PROPHYLACTIC ANTIBIOTICS?

Prophylactic antibiotics are associated with a lower incidence of pneumonia in cardiac arrest survivors treated with targeted temperature management ‡

David J. Gagnon^{a,e,*}, Niklas Nielsen^{b,e}, Gilles L. Fraser^{a,c,e}, Richard R. Riker^{c,d,e}, John Dziodzio^{c,e}, Kjetil Sunde^{e,f}, Jan Hovdenes^{e,g}, Pascal Stammet^{e,h}, Hans Friberg^{e,i}, Sten Rubertsson^{e,j}, Michael Wanscher^{e,k}, David B. Seder^{c,d,e}

Univariate analysis of outcomes related to prophylactic antibiotics.

Variable	All Patients (<i>n</i> = 1240)	PRO (<i>n</i> = 416)	No-PRO (<i>n</i> = 824)	pa
Serious infections, <i>n</i> (%) ^b	(<i>n</i> = 1206)	(n = 414)	(<i>n</i> = 792)	
Any serious infection	553 (45.9%)	67 (16.2%)	486 (61.4%)	<0.001
Pneumonia	487 (40.4%)	52 (12.6%)	435 (54.9%)	<0.001
Sepsis	50 (4.1%)	5 (1.2%)	45 (5.7%)	<0.001
Other	57 (4.7%)	13 (3.1%)	44 (5.6%)	0.06
None	653 (54.1%)	347 (83.8%)	306 (38.6%)	< 0.001

Conclusio

Prophylactic antibiotics were associated with a reduced incidence of pneumonia Functional outcome was similar

RESUSCITATION, IN PRESS

NEUROLOGIC RECOVERY

CCU (02/03/2015)

- * Patient regained consciousness
- * Patient is extubated on 02/06/2015

Time on CCU: 01/30-02/11/2015 Regular Ward: 02/11-02/20/2015

 \rightarrow No neurologic sequelae (OPC 1, CPC 1)

SEDATION

Sedation Standard - Department for Emergency Medicine, Medical Univ. Vienna

- * Midazolam 0,125 mg/kg/h
- * Fentanyl 0,002 mg/kg/h
- * Esmeron 0,25 mg/kg/h

Hypothermia and Drugs

- * Affects drug metabolism
- * Affects drug/receptor interaction
- * During hypothermia: high blood levels, reduced effect
- * During rewarming: toxicity develops

Comparison of midazolam/ fentanyl versus propofol/remifentanil

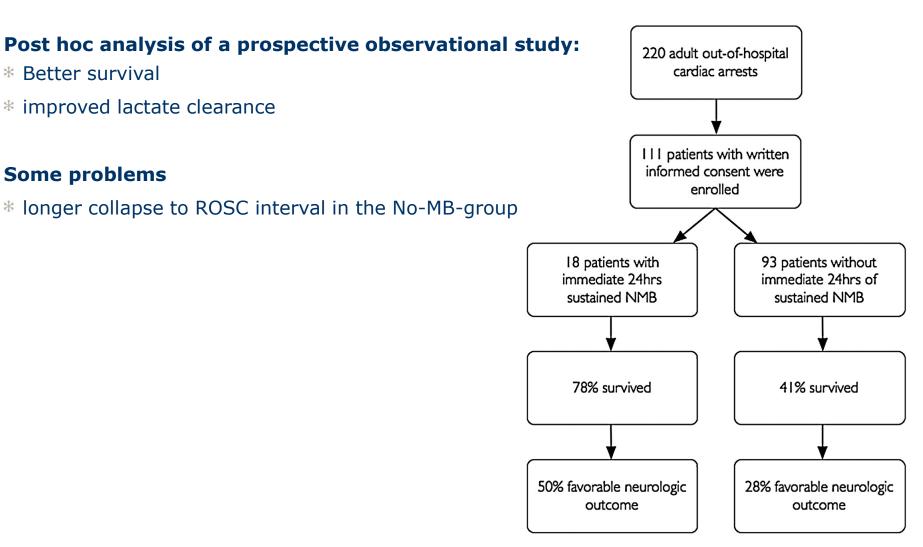
- * Randomized clinical study comparing, 50 Patients
- * Lower time to offset for propofol/remifentanil 13.2 (2.3–24) vs. 36.8 (28.5–45.1)
- * Norepinephrine infusion needed twice as often
- * Same outcome

* Free full text review:

* Zhou and Poloyac

The effect of therapeutic hypothermia on drug metabolism and drug response: cellular mechanisms to organ function

* Expert Opin Drug Metab Toxicol. 2011 July ; 7(7): 803–816.


* longer collapse to ROSC interval in the No-MB-group

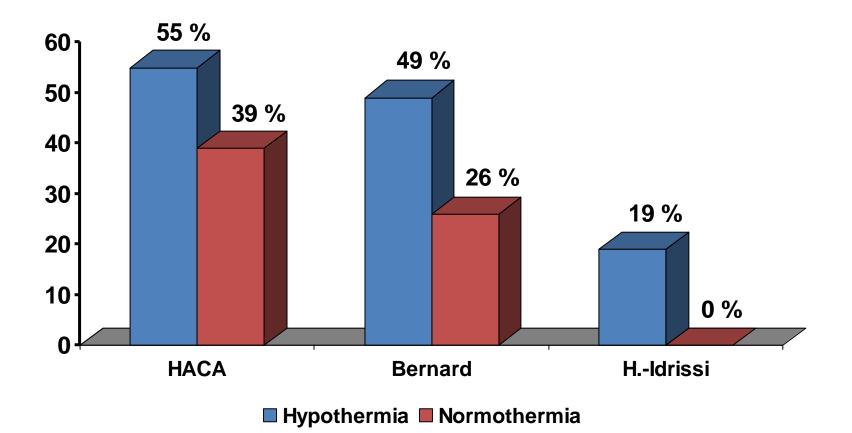
NEUROMUSCULAR BLOCKADE

* improved lactate clearance

* Better survival

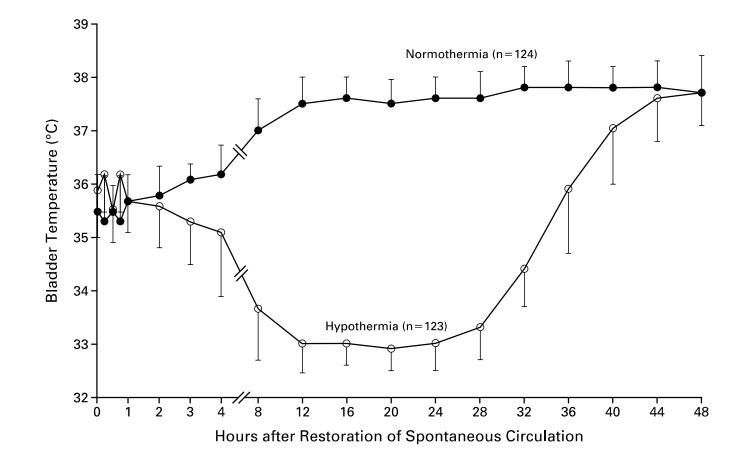
Some problems

Salciccioli et al. Continuous neuromuscular blockade is associated with decreased mortality in post-cardiac arrest patients. Resuscitation 2013.

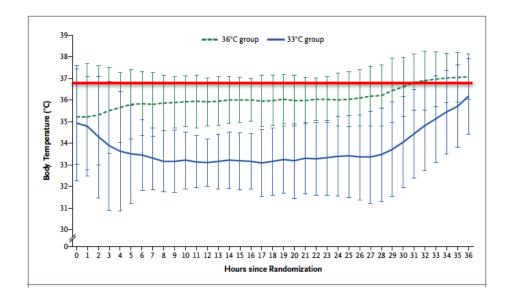

© EMCOOLS

EMCOOLS EASY EFFICIENT PATIENT

THERAPEUTIC HYPOTHERMIA EFFECT ON OUTCOME – VF PATIENTS, HACA-STUDY

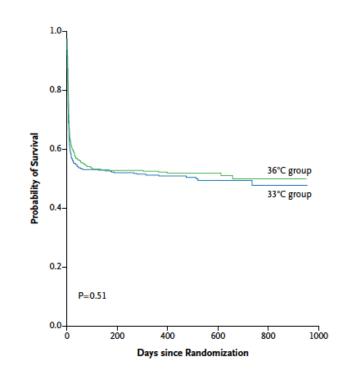

First randomized trials (2002)

© EMCOOLS


THERAPEUTIC HYPOTHERMIA HACA-STUDY

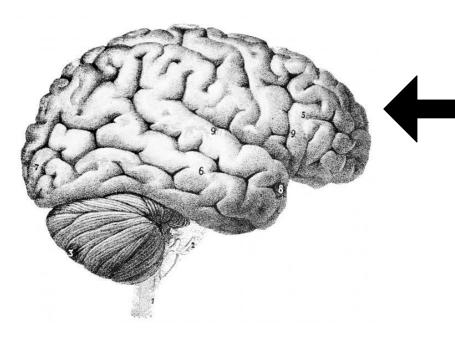
33°C vs. 36°C

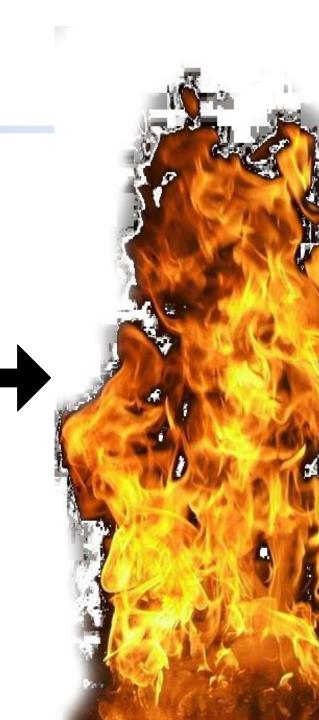
How cool is cool enough?



EMCOOLS

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE


Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest

33°C vs. 36°C

How close do you want your brain to the heat?

33°C vs. 36°C

How close do you want your brain to be to the heat?

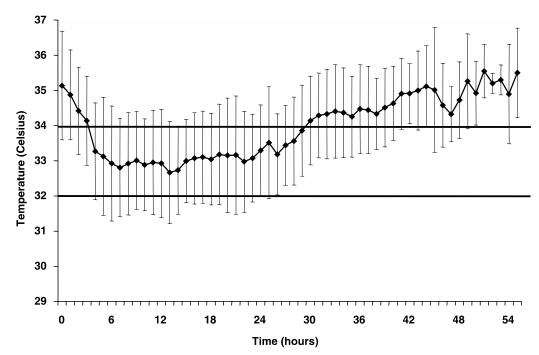


Figure 1. Mean temperature recordings for all patients. *Horizontal bars* mark the target temperature range of $32-34^{\circ}$ C. Time 0 represents cooling initiation (n = 32).

Merchant et al, CCM 2006: Therapeutic hypothermia after cardiac arrest: Unintentional overcooling is common using ice packs and conventional cooling blankets

ONGOING STUDIES IN:

- Cooling during CPR
- Stroke
- MI
- Traumatic brain injury
- Spinal chord injury
- Hepatic encephalopathy
- Heat stroke

Thank you!

March 2015