Hyponatremia: Approach & Management

By
Ahad Alhassan, MBBS
King Saud University

Objectives

Define Hyponatremia

6 step approach and management of Hyponatremia

Complications of Hyponatremia

What to do if you over-correct Na?

What is Hyponatremia?

Most common electrolyte disorder

Occurs in about 20% of all Hospital admissions

30% of ICU admissions

 Levels <135 is directly associated with 个ed in Hospital mortality (acute>chronic)

Hyponatremia

• Mild: 130 – 135 mmol/L

• Moderate: 125 – 129 mmol/L

Severe: < 125 mmol/L

Hyponatremia

Acute (<48 hrs) vs Chronic

By Symptoms:

Severity	Symptom
Moderately severe	Nausea without vomiting Confusion Headache
Severe	Vomiting Cardiorespiratory distress Abnormal and deep somnolence Seizures Coma (Glasgow Coma Scale ≤8)

The Traditional Approach

$$\begin{split} p &= n_{e}KT + n_{i}KT - KT \left[\frac{\kappa^{3}}{24\pi} + 2\pi \left[n_{e}n_{e}\lambda_{ee}^{3} \left[K_{\circ}\left(\xi_{ee}\right) - \frac{\xi_{ee}^{3}}{6} \left(\ln\kappa\lambda_{ee}\right) \right] \right. \\ &+ n_{i}n_{i}\lambda_{ii}^{3} \left[K_{\circ}\left(\xi_{ii}\right) - \frac{\xi_{ii}^{3}}{6} \left(\ln\kappa\lambda_{ii}\right) \right] + 2n_{e}n_{i}\lambda_{ei}^{3} \left[K_{\circ}\left(\xi_{ee}\right) - \frac{\xi_{ee}^{3}}{6} \left(\ln\kappa\lambda_{ei}\right) \right] \right] \\ &+ \frac{\kappa^{3}}{24\pi} \left[3\left(\kappa\lambda_{ee}\right)^{2} + 3\left(\kappa\lambda_{ii}\right)^{2} + 6\left(\kappa\lambda_{ei}\right)^{2} - \frac{9}{2\sqrt{2}} \frac{n_{e}\Lambda_{e}^{3}}{2s_{e} + 1} - \frac{9}{2\sqrt{2}} \frac{n_{i}\Lambda_{i}^{3}}{2s_{i} + 1} \right. \\ &+ \frac{27}{4\left(2s_{e} + 1\right)\left(2s_{e} + 1\right)} \left(\kappa\lambda_{ee}\right)^{2} + \frac{54}{4\left(2s_{e} + 1\right)\left(2s_{i} + 1\right)} \left(\kappa\lambda_{ei}\right)^{2} + \frac{27}{4\left(2s_{i} + 1\right)\left(2s_{i} + 1\right)} \left(\kappa\lambda_{ii}\right)^{2} \right] \\ &+ 6\pi n_{e}^{2}n_{i}\lambda_{ee}^{6}\lambda_{ii} \left[K_{\circ}\left(\xi_{ei}\right) - \frac{\xi_{ei}^{3}}{6} \left(\ln\kappa\lambda_{ei}\right) \right] + 6\pi n_{e}^{2}n_{i}\lambda_{i}^{6}\lambda_{ee} \left[K_{\circ}\left(\xi_{ei}\right) - \frac{\xi_{ei}^{3}}{6} \left(\ln\kappa\lambda_{ei}\right) \right] \\ &+ 2\pi n_{e}^{3}\lambda_{ee}^{6} \left[K_{\circ}\left(\xi_{ee}\right) - \frac{\xi_{ee}^{3}}{6} \left(\ln\kappa\lambda_{ee}\right) \right] + 2\pi n_{i}^{3}\lambda_{ii}^{6} \left[K_{\circ}\left(\xi_{ii}\right) - \frac{\xi_{ii}^{3}}{6} \left(\ln\kappa\lambda_{ii}\right) \right] \\ &- \frac{27\Lambda^{6}}{4096\pi^{6}\sqrt{\pi}}\kappa^{6}\beta \left[\frac{1}{2} - \frac{11}{12\sqrt{2}} \frac{n_{e}\Lambda^{2}}{2s_{e} + 1} + \left(\frac{\sqrt{3} + 1}{6\sqrt{3}} \right) \frac{n_{e}n_{i}\Lambda^{4}}{\left(2s_{e} + 1\right)\left(2s_{i} + 1\right)} - \frac{\sqrt{2}}{9\sqrt{3}} \frac{n_{e}n_{e}\Lambda^{6}}{\left(2s_{i} + 1\right)\left(2s_{i} + 1\right)} - \frac{\sqrt{2}}{9\sqrt{3}} \frac{3n_{i}^{2}n_{e}\Lambda^{6}}{\left(2s_{e} + 1\right)} - \frac{\sqrt{2}}{38400} \left(\kappa\lambda_{ei}\right)^{2} - \frac{397\pi\sqrt{3}}{38400} \left(\kappa\lambda_{ei}\right)^{2}$$

$$[Na^{+}]_{2 \text{ plasma}} = \frac{([Na^{+}]_{1 \text{ plasma}} + y_{1})TBW_{1} + 1.03 \times E_{MB}}{TBW_{1} + V_{MB}} - y_{2}$$

where

$$[E] = [Na^+ + K^+]$$

$$\begin{split} E_{MB} &= (Na^+ + K^+)_{input-output} = \text{mass balance of Na}^+ + K^+ \text{ in a chosen duration of time.} \\ &= [E]_{IVF} \times V_{IVF} + [E]_{oral} \times V_{oral} + [E]_{tube \ feed} \times V_{tube \ feed} + [E]_{TPN} \times V_{TPN} \\ &- [E]_{urine} \times V_{urine} - [E]_{GI} \times V_{GI} - [E]_{sweat} \times V_{sweat} \end{split}$$

 $V_{MB} = V_{input} - V_{output} = mass balance of H_2O in a chosen duration of time.$ $= V_{IVF} + V_{oral} + V_{tube feed} + V_{TPN} + V_{oxidation} - V_{urine} - V_{GI}$ $- V_{sweat} - V_{insensible}$

y = 23.8 + (1.6/100)([G] - 120) where [G] = plasma glucose concentration. In patients with euglycemia, $y_1 = y_2 = 23.8$ for the sake of simplification.

The Traditional Approach

- Calculations... & Calculations:
 - Estimated osmolality
 - Corrected Na & glucose
 - Corrected Na & lipids
 - Corrected Na & protein
 - Expected change in Na deficit... & many more ②

Corrected serum (Na⁺)
$$= \text{measured (Na}^+) + 2.4$$

$$\times \frac{(\text{glucose (mg/dl)} - 100 \text{ (mg/dl)})}{100 \text{ mg/dl}}$$

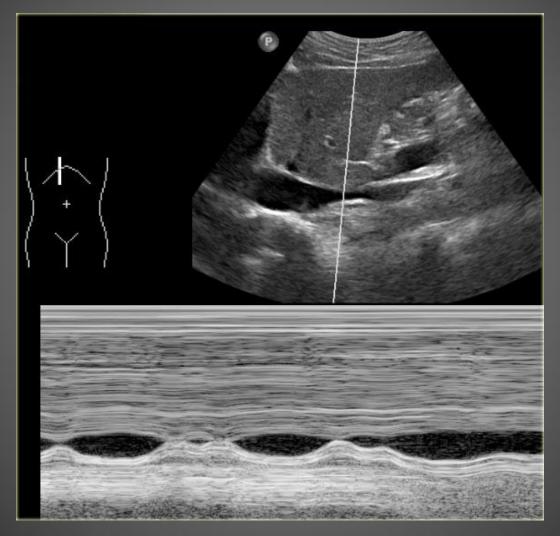
Change in plasma [Na⁺] =
$$\frac{\text{Infusate [Na^+] - plasma [Na^+]}}{\text{Total body water } + 1}$$

Change in plasma [Na⁺] =

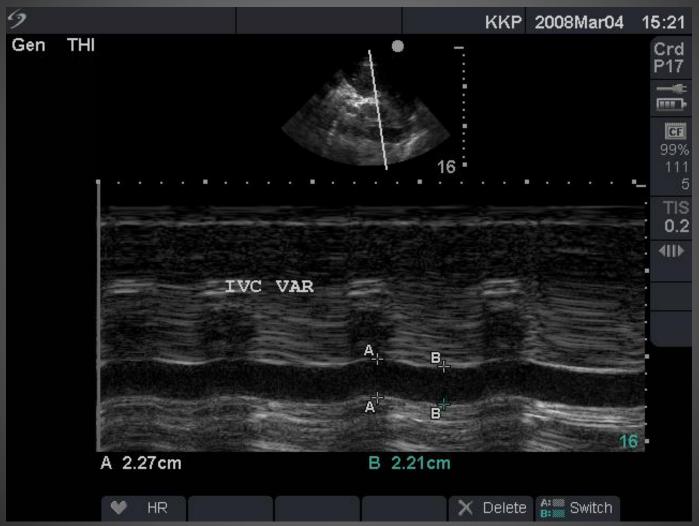
Infusate [Na⁺] + infusate [K⁺] - plasma [Na⁺]

Total body water + 1

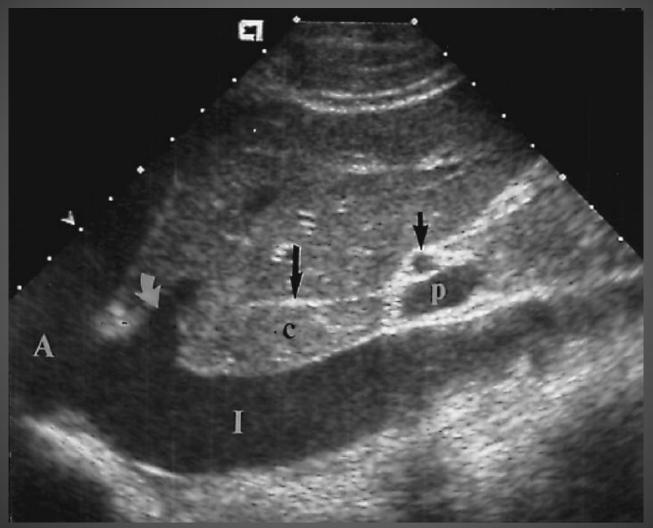
6 Steps to Approach Hyponatremia


- 1) Start with ABCs (priority)
- 2) Immediately Treat Neurological Emergencies (Seizures, coma or cerebral herniation/oedema)
 - Administer 3% hypertonic saline 100-150cc IV over
 5-10min
 - repeat a second bolus if no improvement
 - Stop all fluids after the second bolus (don't overcorrect)

- 3) Intravascular Volume: Assess & Address
 - Hypovolemic: priority is to restore adequate circulating volume
 - <u>Euvolemic:</u> volume status normal, no treatment
 - Hypervolemic: sodium restriction, water restriction and diuretics



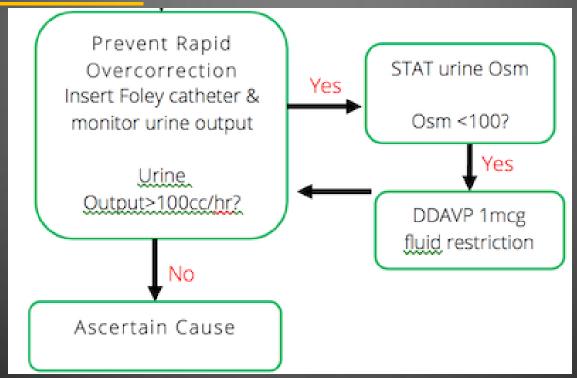
Hypovolemia



Euvolemic

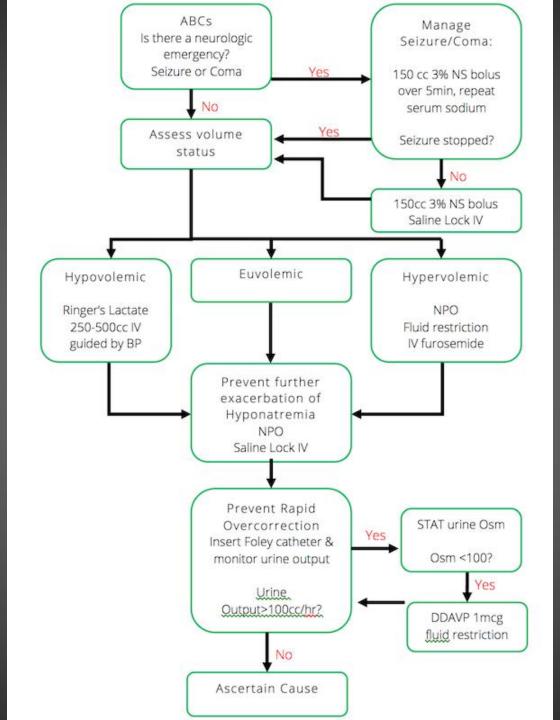
Hypervolemic

- 4) Prevent further Hyponatremia
 - strict fluid restriction
 - saline locking the IV Cannula (NO FLUIDS)
 - It is extremely important to tell the patient, his family and healthcare team "Water can literally kill you!"



- 5) Prevent Over-Correction "Rule of 100s" & "Rule of 6s"
 - Rule of 6s:
 - "Six in six hours for severe symptoms, then stop.
 - Six a day makes sense for safety."

5) Prevent Over-Correction "Rule of 100s" & "Rule of 6s"

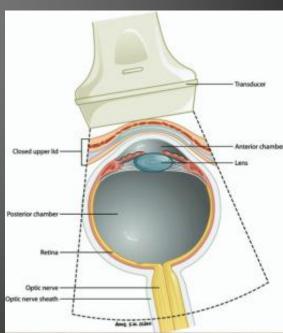

— Rule of 100s:

- 6) Find out the Cause of Hyponatremia
 - Look at chief complaint: vomiting, diarrhea, pain or altered level of awareness
 - Review Medication List: causes of SIADH (thiazide diuretics and SSRIs), chronic steroids (adrenal imp)
 - Evaluate PMHx: Hx of end organ failure (CHF, liver failure and renal failure) or cancers
 - Lab work: hyperglycemia, potassium (hyperkalemia
 adrenal insufficiency), TSH (hypothyroidism)

Complications of Hyponatremia

1) Cerebral Edema:

Severe Hyponatremia


Rapid Hyponatremia

امعة

King Saud University

+Altered level of consciousness

Complications of Hyponatremia

- 2) Osmotic Demyelination Syndrome (ODS)
 - Formerly known as Central Pontine Myelinolysis
 - Affects pons, cerebellum and basal ganglia
 - Occurs with Over-Correction of Hyponatremia
 - Clinical Dx (ataxia, quadriplegia, cranial nerve palsies, and the 'locked-in' syndrome)
 - Presents up to 7 days after rapid correction of Na

Complications of Hyponatremia

2) Osmotic Demyelination Syndrome (ODS)

- Risk Factors:
 - Elderly
 - Malnourished
 - Chronic Hyponatremia
 - Hyperkalemia

What to do in Over-Correction?

- repeat serum sodium 个个个个 dramatically higher than expected
- Over-Correction approach:
 - 1. Assess & correct intravascular volume
 - 2. Prevent ↑ in Na:
 - A. Fluid restriction: make the patient NPO and stop IV fluids
 - B. Give DDAVP 1 microgram IV
 - 3. Consult Nephrology

Thank you!