GUILLIAN BARRE SYNDROME

Evvah Karakılıç, MD. Ankara Numune Education and Research Hospital Department of Emergency Medicine

Neuromuscular weakness in the Intensive Care Unit

- Neuromuscular weakness is a common occurrence in patients who are critically ill
- Developing in ≥ 25 % of patients who are in the ICU

Weakness Patients in the Intensive Care Unit

 Established neuromuscular weakness as an important complication of critical illness in the ICU.

Weakness Patients in the Intensive Care Unit

 Patients with neuromuscular weakness characterized it as axonal motor and sensory neuropathy and distinguished it from acute neuropathy of Guillain-Barre syndrome.

Weakness Patients in the Intensive Care Unit

- These İllnesses;
 - Critical illness myopathy
 - Critical illness polyneuropathy
 - Combined critical illness myopathy and polyneuropathy
 - Prolonged neuromuscular junction blockade

Weakness Patients in the Intensive Care Unit

- In a critically ill patient who develops flaccid generalized weakness
- Differential diagnosis;
 - critical illness myopathy
 - critical illness polyneuropathy
 - combination of the two.
 - prolonged neuromuscular junction blockade

Weakness Patients in the Intensive Care Unit

- Other acute and subacute myopathies can occur in critically ill patients such as;
 - Rhabdomyolysis
 - Cachectic myopathy
 - -Guillain-Barre syndrome

Guillain-Barre syndrome (GBS)

- The acute immune-mediated polyneuropathies are classified under the eponym Guillain-Barre syndrome.
- GBS is an acute monophasic paralyzing illness, usually provoked by a preceding infection.
- GBS occurs world-wide and all age groups are affected.

Pathophysiology

- Usually postinfectious (Campylobacter, CMV, EBV, HIV)
- A small percentage of patients develop GBS after another triggering event such as immunization, surgery, trauma etc.
- GBS is thought to result from an immune response to a preceding infection that cross-reacts with peripheral nerve components because of molecular mimicry.

Pathophysiology

- The immune response can be directed towards the myelin or the axon of peripheral nerve, resulting in demyelinating and axonal forms of GBS
- Result: defects in the propagation of electrical nerve impulses, with eventual conduction block and flaccid paralysis

- Progressive, fairly symmetric muscle weakness accompanied by absent or depressed deep tendon reflexes.
- The weakness can vary from mild difficulty with walking to nearly complete paralysis of all extremity, facial, respiratory and bulbar muscles

- Progressive, fairly symmetric muscle weakness
 - > Typically starts in proximal legs
 - It begins in the arms or facial muscles in about 10 percent of patients
 - >10-30 % Severe respiratory muscle weakness
 - ≻50 % oropharyngeal weakness

- Oculomotor weakness (15 %)
- Paresthesias in the hands and feet accompany the weakness (more than 80 %)
- Pain, typically located in the back and extremities (during the acute phase 66 %)

Dysautonomia occurs in 70 percent of patients
Tachycardia (the most common)
Urinary retention
Hypertension/hypotension
Bradycardia,
Ileus

Diagnosis

- The typical finding; elevated cerebrospinal fluid (CSF) protein with a normal white blood cell count (*albuminocytologic dissociation*)
- Clinical neurophysiology studies (ie, electromyography and nerve conduction studies) show evidence of an acute polyneuropathy

Diagnosis

 Glycolipid antibodies may be associated with different forms or aspects of GBS

GBS Variants

- GBS is a heterogeneous syndrome with several variant forms.
- Each form of GBS has distinguishing clinical, pathophysiologic, and pathologic features.

Acute inflammatory demyelinating polyneuropathy (AIDP)

- The most common form in the US and Europe (85-90 %)
- Progressive, fairly symmetric muscle weakness accompanied by absent or depressed deep tendon reflexes.

Acute inflammatory demyelinating polyneuropathy (AIDP)

- Immune reactions directed against epitopes in Schwann cell surface membrane or myelin
- Inflammatory demyelination is thought to start at the level of the nerve roots
- Result: muscle weakness
- Remyelination occurs several weeks to months

Acute inflammatory demyelinating polyneuropathy (AIDP)

- clinical neurophysiology studies:
 - prolonged or absent F waves and absent H reflexes
 - İt reflects demyelination at the level of the nerve roots
- conduction studies: slowed conduction velocities after the third or fourth week
- EMG of weak muscles shows reduced recruitment

Acute motor axonal neuropathy

- An acute axonal form of GBS is AMAN.
- Most cases are preceded by Campylobacter jejuni infection.
- Clinically;
 - deep tendon reflexes are occasionally preserved
 - Sensory nerves are not affected.
- Other clinical features and recovery of AMAN similar to those of AIDP.

Acute motor axonal neuropathy

- There is;
 - Selective involvement of motor nerves
 - -No sensory nerve involvement
 - -No peripheral nerve demyelination.
 - No significant slowing of conduction velocities

Acute motor axonal neuropathy

- There are antibodies (GM1, GD1a, GalNac-GD1a, and GD1b) to the gangliosides of peripheral nerve axons
- These anti-ganglioside antibodies can be induced by Campylobacter jejuni infection.
- Result: axonal nerve damage without significant axonal degeneration

Acute motor and sensory axonal neuropathy (AMSAN)

- It is severe form of AMAN
- Sensory and motor fibers are affected with marked axonal degeneration
- Clinically, AMSAN has more sensory symptoms.
- Pathology: axonal lesions of both motor and sensory nerve fibers.

Miller Fisher syndrome

• The typical presentation:

- ophthalmoplegia with ataxia and areflexia

- 1/4 of patients will develop some extremity weakness
- Incomplete forms;
 - include acute ophthalmoplegia without ataxia,
 - acute ataxic neuropathy without ophthalmoplegia

Miller Fisher syndrome

- Clinical neurophysiology studies:
 - reduced or absent sensory responses without slowing of sensory conduction velocities.
 - When there is associated weakness, the motor nerve conduction
- abnormalities of AIDP may be present

Bickerstaff encephalitis

- This is variant of GBS and characterized by;
- encephalopathy
- hyperreflexia
- ophthalmoplegia and ataxia. (like Miller Fisher syndrome)

Pharyngeal-cervical-brachial weakness

- Another variant of GBS
- Characterized by;
 - acute weakness of the oropharyngeal, neck, and shoulder muscles with swallowing dysfunction
 - -May be facial weakness

Other variants

- Acute pandysautonomia
- Pure sensory GBS,
- Facial diplegia and distal limb paresthesia
- Sixth nerve palsy and distal paresthesia
- Bilateral lumbar radiculopathy

Diagnosis

- Clinical presentation of GBS is important
 - Progressive
 - -Mostly symmetric muscle weakness
 - -absent or depressed deep tendon reflexes
- It is confirmed
 - -cerebrospinal fluid (CSF)
 - Clinical neurophysiology studies

CSF

- Elevated CSF protein with a normal CSF white blood cell count.
- This finding, known as albuminocytologic dissociation (50-66 % positive in the first week)
- Normal CSF protein is found if it is tested earlier than one week. (30-50 %)

CSF cell count

- Typically normal
- Some times mildly elevated

Neurophysiological studies

- Performed to confirm the diagnosis of GBS
- Give some information about prognosis.
 - -Nerve conduction studies (NCS)
 - Electromyography (EMG)

Neurophysiological studies

- Some times the diagnosis of GBS and
- Differential diagnosis can be difficult.
 - acute motor axonal neuropathy (AMAN)
 - acute motor and sensory axonal neuropathy (AMSAN)
 - acute inflammatory demyelinating polyneuropathy (AIDP)
- Serial neurophysiological studies are

frequently helpful.

Antibodies

- Immune reactions directed against Schwann cell surface membrane or myelin
- limited clinical utility

Antibodies

 Currently, laboratory testing for antibodies to glycolipids other than GQ1b is not performed routinely because of limited clinical utility.

Diagnostic features

- Progressive weakness of more than one limb
 from minimal weakness to total paralysis
- Areflexia.
 - universal areflexia is typical
 - distal areflexia with hyporeflexia at the knees and biceps will suffice if other features are consistent

Supportive features

- Progression of symptoms over days to four weeks
- Relative symmetry
- Mild sensory symptoms or signs
- Cranial nerve involvement, especially bilateral facial nerve weakness
- Recovery starting two to four weeks after progression halts
- Autonomic dysfunction
- No fever at the onset
- Elevated protein in CSF with a cell count <10/mm3
- Electrodiagnostic abnormalities consistent with GBS

- Cerebral
 - Bilateral strokes
 - Psychogenic symptoms
- Cerebellar
 - Acute cerebellar ataxia syndromes
 - Posterior fossa structural lesion

- Spinal
 - Compressive myelopathy
 - Transverse myelitis
 - Anterior spinal artery syndrome
 - Poliomyelitis
 - Other infectious causes of acute myelitis (eg, West Nile virus, coxsackieviruses, echoviruses)

- Peripheral nervous system
 - Toxic neuropathy (drugs, toxins)
 - Critical care neuropathy
 - Diphtheria
 - Tick paralysis
 - Porphyria
 - Lyme disease
 - Vasculitis

- Neuromuscular junction
 - Botulism
 - Myasthenia gravis
 - Neuromuscular blocking agents
- Muscle disease
 - Acute viral myositis
 - Acute inflammatory myopathies
 - Metabolic myopathies (hypo/hyperkalemic)
 - Periodic paralysis

Treatment

- Supportive care is important
- due to autonomic dysfunction
 - Patients need intensive care unit (ICU) monitoring
 - Respiratory
 - Cardiac
 - hemodynamic.
- Less severely affected patients can be managed in intermediate care units

Treatment

- Respiratory failure 15-30 %
- due to bulbar dysfunction
 - swallowing problems
 - inability to clear secretions
- If Patients need ventilatory support
 - Succinylcholine should be avoided
 - Forced vital capacity <20 mL/kg
 - Maximum inspiratory pressure <30 cmH2O
 - Maximum expiratory pressure <40 cmH2O

Treatment

- predictors of respiratory failure*
 - Time of onset to admission less than seven days
 - Inability to cough
 - Inability to stand
 - Inability to lift the elbows
 - Inability to lift the head
 - Liver enzyme increases

*Sharshar T et all. Early predictors of mechanical ventilation in Guillain-Barrésyndrome. Crit Care Med. 2003;31(1):278.

Cardiovascular management

- Cardiovascular monitoring
 - İt should be instituted at time of admission
- Intraarterial monitoring
 - İt should be instituted in the presence of significant blood pressure fluctuations
 - Both paroxysmal hypertension and orthostatic hypotension are frequent

Cardiovascular management

- Hypotension;
 - treated with fluids
 - low-dose phenylephrine
- Hypertension (severe HT, MAP>125)
 - Labetalol
 - Esmolol
 - nitroprusside

Arrhythmias

- Sustained sinus tachycardia
 - requires no treatment
- bradycardia and asystole may be seen
- Others
 - atrial fibrillation
 - Atrialflutter
 - paroxysmal tachycardia
 - ventricular tachycardia
 - elevated or depressed ST segments
 - flat or inverted T waves

- Bowel and bladder care
 - Additional autonomic problems include adynamic ileus and urinary retention.
 - Daily abdominal auscultation to monitor for bowel silence

Pain control

- Neuropathic pain occurs (40-50 %)
- Gabapentin or carbamazepine
 - may be used to control of pain during the acute phase
- NSAIDS do not provide adequate pain relief
- Appropriate narcotic analgesics may be used

 careful monitoring for adverse effects

Rehabilitation

- Acute-phase rehabilitation
 - individualized program of gentle strengthening
 - Isometric
 - Isotonic
 - Isokinetic
 - manual resistive and progressive resistive exercises
- After the acute phase, disabled patients should be treated by a multidisciplinary rehabilitation team.

Disease Modifying Treatment

- The main modalities of therapy for GBS
 - -plasma exchange (plasmapheresis)
 - Plasmapheresis is thought to remove circulating antibodies, complement, and soluble biological response modifiers.
 - administration of intravenous immune globulin (IVIG)

- IVIG
 - mechanism of action is unknown
 - providing anti-idiotypic antibodies
 - modulating expression and function of Fc receptors
 - interfering with activation complement

Other therapies

- Glucocorticoids
- Interferon-beta has been reported to be beneficial in individual cases

Choice of therapy

- Guidelines from the American Academy of Neurology (AAN)
 - Treatment with plasma exchange or IVIG hastens recovery from GBS
 - The beneficial effects of plasma exchange and IVIG are equivalent
 - Combining the two treatments is not beneficial
 - Glucocorticoid treatment alone is not beneficial

Prognostic factors

- Poor prognosis for recovery from GBS
 - Older age
 - Rapid onset (less than seven days) prior to presentation
 - Severe muscle weakness on admission
 - Need for ventilatory support
 - An average distal motor response amplitude reduction to <20 percent of normal
 - Preceding diarrheal illness

Thank you