

DIABETIC KETOACIDOSIS

Polat Durukan, MD, Assoc. Prof.
Erciyes University Faculty of Medicine
Department of Emergency Medicine
Kayseri, Turkey

Introduction

Diabetes Mellitus: It is a chronic disease characterized by disturbance in carbohydrate metabolism due to inadequacy of insulin use and secretion.

- Prevalence, 2.8% in the year 2000, 4.4% in 2030
- One million new case in US
- 171 million diabetic patients in the whole world
- Turkey prevalence 7.2%

Introduction

Prevalence increased 33% from the year 1990 to today

Increase in obesity

Increased life expectancy and elderly population (>65 y)

 Diabetic emergencies are very frequent and cause fatal results

DKA

HONC

Hypoglycemia

■ In the developed countries it is the 5th most cause of death

Anatomy

■ Pancreas

- Behind stomach, between spleen and duodenum
- Islands of Langerhans
 - a cells glucagon
 - β cells insulin, pro-insulin ve C-peptide
 - Δ cells somatostatin/gastrin

DM

- -Diabetes, causing macrovascular complications like atherosclerotic cardiovascular, cerebrovascular and peripheric vascular diseases results in atherogenesis and hypertension
- -Additionally may cause complications like DKA, HONC and hypoglycemia requiring emergency care
- -Early diagnosis and treatment are essential to prevent end stage complications

DKA Definition

- In DKA, there is absolute or relative insulin deficiency. Hyperglycemia, dehydration and acidosis follow this condition
- -There will be also disturbances in intermediate metabolisms

DKA

- -This absolute or relative deficiency in insulin level causes an increase in counter-insulin hormones like cortisole, glucagon, growth hormone and catecholamines
- -This deficiency in insulin level, primary anabolic hormone, cause difficulty in muscle, adipose tissue and liver to take glucose
- -Glucose production and lipid mobilization in liver increase, peripheric glucose usage decreases and ketone production is stimulated

DKA Etiology

Absolute insulin deficiency

- Incompliance to insulin treatment, skipping the dose
- New onset Type 1 DM

DKA Etiology

Relative insulin deficiency

- Infection
- Myocardial Infarction
- Trauma
- Cerebrovascular disease
- Excessive exercise
- Fatigue
- Alcohol
- Steroids
- Adrenergic agonists
- Other stress sources

Pathophysiology

```
Net effective insulin level and activity \downarrow
Counterregulatory Hormones \( \text{ (Glycogenolysis, Glyconeogenesis, Lipoysis) } \( \text{ \} \)
                           FFA ↑ (metabolic acidosis)
                  Ketone bodies \( \text{ (ketonemia, Hyperglycemia)} \)
                                   Osmolarity 1
    Glycosuria, Ketonuria → Loss of Water, Na, K and other electrolytes
                         Osmotic diuresis - Dehydration
```


DKA

Classical Triad

- Hyperglycemia (Usually >250 mg/dL)
- HCO3 ↓ (<15 mEq/L)</p>
- Ketonemia, ketonuria, acidosis (pH < 7.3)

Signs

- Polyuria, dehydration
- Sodium, Phosphorus, Magnesium deficiency
- Deep hypokalemia may be seen

- Thirsty, polydipsia,polyuria, nocturia(Classical Hyperglycemic symptoms)
- Kussmaul breathing
- ■Generalized weakness

- SSS depression (Letargy)
- Ketonuria/ketonemia
- Anoreksia (sometimes increased appetite)
- Nausea/vomiting
- Abdominal pain

Differential

- Fasting ketosis
- Alcoholic ketoacidosis
- Acute appendicitis
- HONC
- Hypokalemia
- Hyponatremia
- Lactic acidosis

- Metabolic acidosis
- Myocardial infarction
- Pneumonia, immunecompramised
- Septic shock
- Salycylate poisoning
- Urinary infection

General signs

- -Sick appearance
- -Dry skin
- -Dry mucous membranes
- -Decreased skin turgor
- -Decreased reflexes
- -Sensorial blunting
- -Coma

Vital signs

- -Tachycardia
- -Filiform pulse
- -Hypotension
- -Tachypnea
- -Hypothermia
- -Fever (if infection +)

Specific signs

- -Scent of ketone in the mouth (rotten fruit)
- -Conscious, lethargic or comatous
- -Abdominal tenderness (acute abdomen??)
- -Hyperventilation secondary to acidosis (kussmaul)

- -Glucose: >250 mg/dL, Finger tip measurement must be made
- -Na: Every 100 mg/dL increase of glucose over 100 mg/dL, cause a decrease of 1.6 mEq/L in serum Na level
- -K loss: (5 mEq/kg) It may be masked as hyperkalemia due to acidosis!! ECG can be used to detect cardiac effects of potassium
- -In the acidosis, H+ moves to intracellular space, K+ moves to extracellular space and paradoxally K+ ↑ seen
- As a result of rehydration and insulin treatment, K+ ↓ seen

Laboratory

Bicarbonate: ↓ To evaluate acidosis, it is used together with anion gap

Phosphorus: Hypophosphatemia risk (poor feeding, chronic alcoholism) investigated

Hyperamilasemia: Can be seen without pancreatitis

BUN: ↑

Laboratory

- Anion gap: ↑ (Na (Cl + HCO3) (Due to bicarbonate decrease)
- PA Lung X-ray: To differentiate pulmonary infection
- Brain CT: Especially in children DKA can cause brain edema
- ECG: DKA can be seen due to a cardiac event or it may cause cardiac complications

- -CBC: WBC > 15.000 or if there is a shift to left, think of bacterial infection!!!!
- -Arterial or venous blood gas analysis: Generally pH
- <7.3. Venous pH is <0,015 than arterial pH</p>

Laboratory

- -Serum ve Urinary ketone: (Only acetone and acetoacetic acid can be measured) Complete urine analysis
- -Osmolality: Osmolality diabetic coma patients is typically >330 mOsm/kg water. If less than this value, think of another cause of coma!!!!

2(Na+K) + (Glucose/18) + (BUN/2.8)

Treatment-Prehospital

Isotonic Sodium Chloride:

%0.9 NaCl 1 L bolus infusion (In the first hr) (With respect to vital signs and hypovolemia, more can be given)

Emergency Department Management

- -ABC
- -Monitorization
- -Improve tissue perfusion and dehydration
- -Normalise glucose and osmolality
- -Improve acidosis and ketosis
- -Replace electrolyte and volume loss
- -Detect and treat comorbid conditions (infection...)

DKA (Treatment, IV Fluids)

First 1-2 liter %0.9 NaCl (For hemodynamic stability)

Treatment: Insulin

If serum glucose level doesn't decrease 50-70 mg/dL in the first hour, begin double insulin /hour

Treatment

Insulin 0.05-0.1 U/Kg/hr infusion

or

5-10 U sc/2 hr

%5 Dextrose 150-250 mL/hr

(Iatrogenic hypoglycemia!!!!!)

Keep serum glucose between 150-200 mg/dL untill maintenance of metabolic control

Treatment

- By an effective treatment we expect to correct acidosis in 2-3 hours, ketone bodies in 4-6 hours
- No insulin preparation is used other than regular insulin
- American Diabetes Association (ADA) may reccomend IM Insulin treatment, but absorbtion problem can be seen due to peripheric collaps

Treatment-Potassium

Total K deficiency: 40-100 meq/L

If K+>6 meq/L, don't give

If patient is oliguric, don't give

If K+ 5-6 meg/L, give 10 meg/hr

If K+ 3-5 meg/L, give 20 meg/hr

If K+ <3 meq/L, give 30 meq/hr

In the first 36 hours, totally 300 meq/hr K+ is enough

Maximum infusian rate 40 meg/L/hr

Treatment-Bicarbonate

```
-If pH<6.9
88 mEq/0.5-1 hr NaHCO3 infusion
-If pH=6.9-7.0
44 mEq/0.5-1 hr NaHCO3 infusion
-If pH>7.0
HCO3- Don't give!
-Untill pH becoming>7.0 give HCO3 every 2 hour
```

- -Monitorize serum K+
- *Be alert for brain edema in children!

Complications

- Hypoglycemia
- Hypokalemia
- Hyperchloremia (Temporary)
- Cerebral edema (Children)

Consultation

- DKA patients must be hospitalized
- Close monitorization of the treatment
- Intensive care unit

Mortality

- Before 1922 (Invention of insulin): %100
- Today: %2

Thank You