

Let us Sacrifice
our Today so that
our Children can have a
Better Tomorrow

-AP J Abdul Kalam

MMHRC Institute of Emergency Medicine

Former President of India Honorable Shri Dr. A. P. J. Abdul Kalam

Meenakshi Mission Hospital & Research Centre, Madurai

Meenakshi Temple

Historic Hindu Temple, built at 14th Century AD

Resuscitation of a Sick Child

Dr. Narendra Nath Jena

National General Secretary- Society for Emergency Medicine, India (SEMI)

Honorary National Professor – IMA CGP

Director, Institute of Emergency Medicine

Meenakshi Mission Hospital & Research Centre, Madurai, India

- To recognize the acutely ill children in a Systematic way.
- # How PALS approach is different from traditional approach?
- Pathophysiology of cardiac arrest in children.
- Differentiate between patients who do and do not require immediate intervention.

Anatomical Differences

- Big head (especially occiput)
- Short neck
- Big tongue
- "Floppy" epiglottis
- Adeno-tonsillar hypertrophy 3 8yr
- Narrow airway Flow proportional R⁴

Physiological Differences

- Respiratory Rate
- Heart rate
- Blood Pressure
- Ability to Compensate

Cardiac arrest

Adults

Primary cardiac event \rightarrow sudden onset \rightarrow revival and survival outcome better

Children

Usually secondary to hypoxia and shock → gradual onset

→ revival and outcome poor

Early recognition & timely intervention is the key

Step 1

Initial Impression

Step 2

• Evaluate – Identify - Intervene

Step 3

Primary Assessment

Step 4

Secondary Assessment

Step 5

Diagnostics

Initial Impression

First quick look from the doorway

Pediatric Assessment Triangle

Ref: http://circ.ahajournals.org/content/95/8/2185

TIC-LS

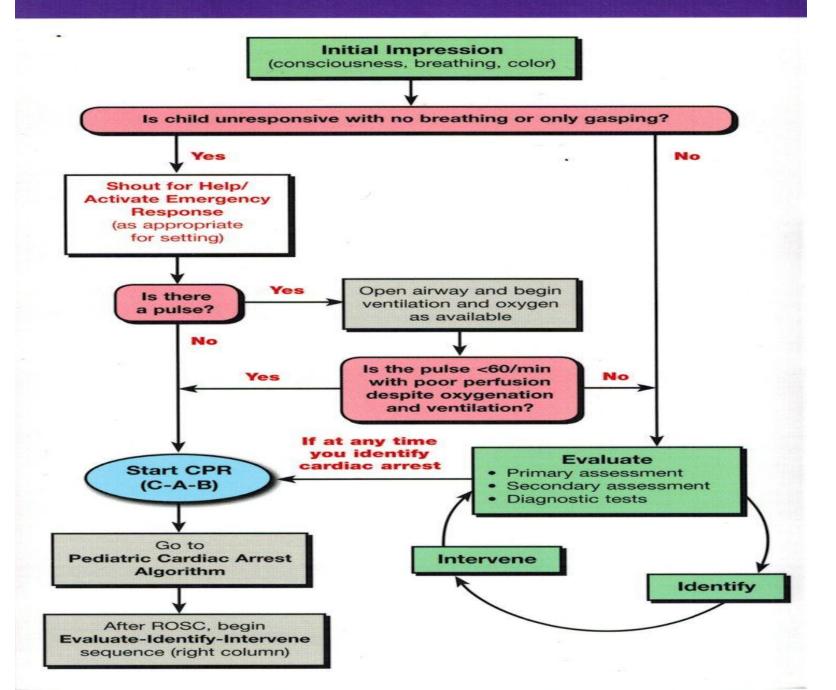
- Tone
- Interactiveness
- Consolability
- Look/stare/gaze
- Speech/Cry

- Work of breathing
- Increased / Decreased / Absent breath sounds
- Abnormal Sounds

Evaluation of Work of Breathing

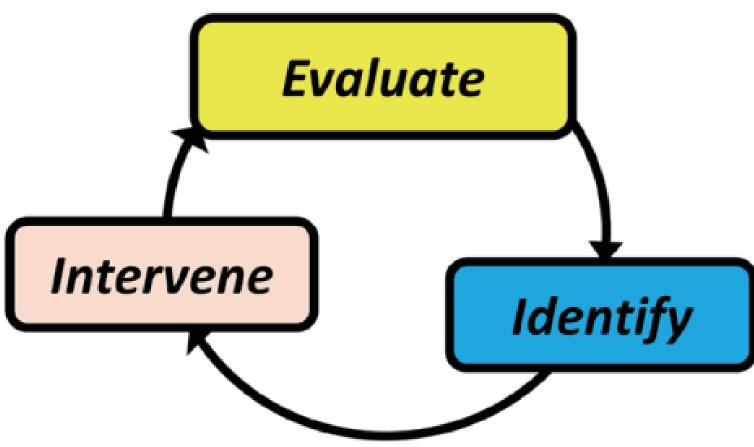
	Normal	Abnormal
Respiratory effort	 Regular breathing Passive expiration 	 Nasal flaring Accessory muscle use Inadequate or absent respiratory effort
Lung and airway sounds	No abnormal sounds	 Noisy breathing (wheeze or grunt or stridor)

- Pallor / Mottling / Cyanosis
- Petechiae or purpura
- Bleeding wounds



Evaluation of Skin & Mucous Membrane

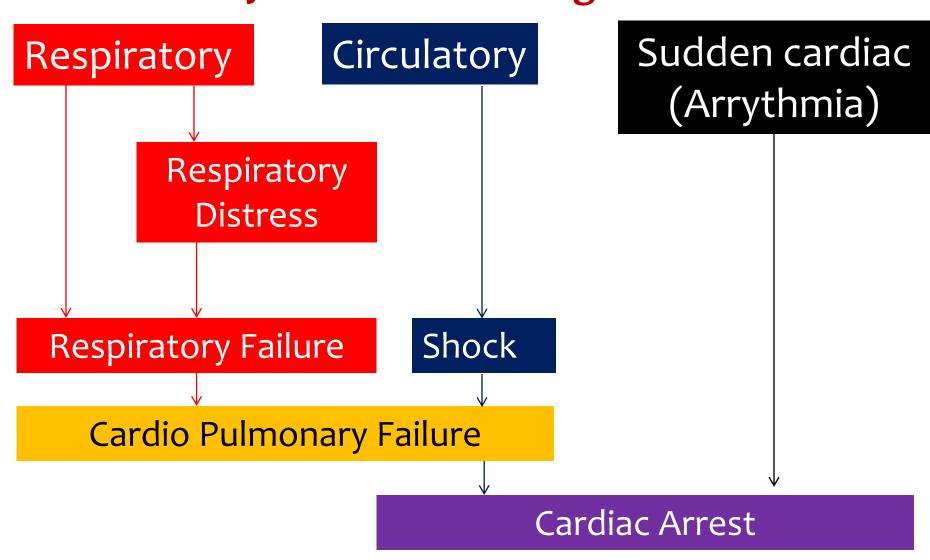
	Normal	Abnormal
Skin Color	Appears normal	PallorMottlingCyanosis
Petechiae or Purpura or Visible bleeding wounds	Not normal	Obvious significant bleeding.Bleeding within the skin


PALS Systematic Approach Algorithm

Evaluate - Identify - Intervene

Evaluate . . .

If no life threatening condition – evaluate the child's condition by using the clinical assessment tools.


Primary
Assessment
ABCDE approach

Secondary Assessment Diagnostics Assessments

Ref: http://aclsstlouis.com/pediatric-advanced-life-support-pals-st-louis-articles/

Identify - Life Threatening Conditions

Type & Severity of Respiratory Problems

	Type	Severity
Respiratory	Upper Airway	 Respiratory distress.
	obstruction.	Respiratory failure.
	Lower Airway	
	obstruction.	
	• Lung tissue disease.	
	Disordered Control	
	of breathing	

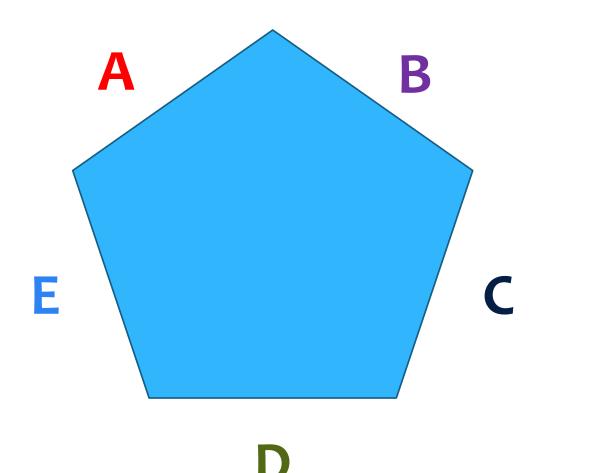
Ref: http://aclsstlouis.com/pediatric-advanced-life-support-pals-st-louis-articles/

Type & Severity of Cardiac Problems

	Туре	Severity
Circulatory	Hypovolemic shock	 Compensated shock
,	• Distributive shock.	 Uncompensated
	Cardiogenic shock	shock
	• Obstructive shock	

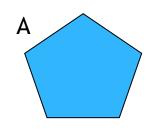
Ref: http://aclsstlouis.com/pediatric-advanced-life-support-pals-st-louis-articles/

Intervene . . .


On the basis of identification of child's condition

- Position the child to maintain an open / patent airway.
- Activating Emergency response system
- Starting CPR
- Obtaining the code cart and monitor
- Administering O2
- Supporting ventilation
- Starting medication

Primary Assessment



- Airway
- Breathing
- Circulation
- Disability
- Exposure

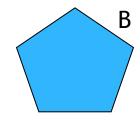
Airway

Look for the movement of chest or the abdomen

Listen for the air movement and breath sounds

Categorize:

Clear : Open & unobstructed


Maintainable : *Maintainable by simple measures*

Non Maintainable : Needs advanced measures

Ref: http://circ.ahajournals.org/content/95/8/2185

Breathing

- 1. Respiratory rate
- 2. Respiratory effort
- 3. Chest wall expansion and air movement
- 4. Lung and airway sounds
- 5. Pulse oximetry

Respiratory rate

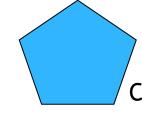
- * Increased RR than age specific- Tachypnea
- * Tachypnea is the first sign of respiratory distress
- Bradypnea is more ominous than tachypnea
- * A fall in respiratory rate should always be evaluated along with changes in sensorium
- * Beware of RR above 60 or below 10 at any age group

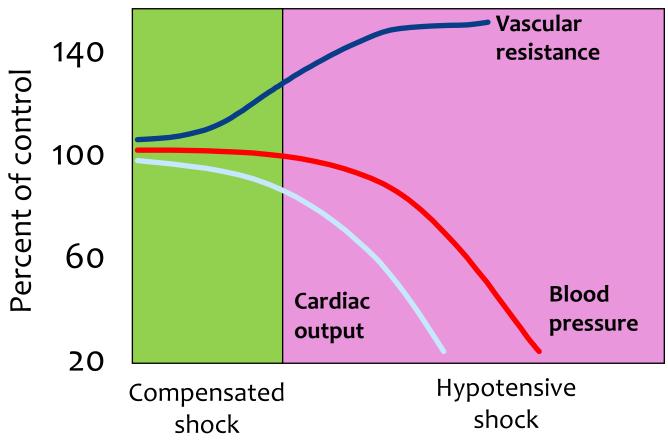
Respiratory efforts

- Nasal Flaring
- * Retractions
 - Mild to moderate subcostal, sub-sternal, intercostal
 - Severe distress supra-sternal, supraclavicular.
 - Retractions associated with
 - * Stridor seen in UAO
 - * Wheeze seen in LAO
 - * Grunting seen in lung tissue disease

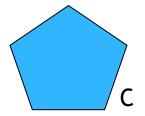
Respiratory efforts

- * Sea-saw respirations
 - Often seen in infants with neuromuscular incoordination
- * Chest wall expansion and air movement
- * Lung and airway sounds
 - Stridor / Grunting / Gurgling / Wheeze /Crackles


Pulse oximetry


- Detects low O2 saturation before clinically apparent cyanosis/ bradycardia
- * SpO2 > 94% in RA adequate oxygenation

Circulation


Hemodynamic Response to Shock

Ref: http://circ.ahajournals.org/content/95/8/2185

Circulation

1. Heart rate and rhythm

- 2. Peripheral and central pulses
- 3. Capillary refill time
- 4. Skin color and temperature
- 5. Blood pressure

END ORGAN PERFUSION

Sensorium

- Brain perfusion

Urine output

- Renal perfusion

Skin color & CRT

- Peripheral perfusion

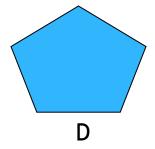
Palpation of Central and Distal Pulses

Capillary refill

Blood pressure

Definition of	Hypotension
---------------	--------------------

Age	Systolic BP (mm Hg)
Term Neonates (0-28 days)	< 60
Infants (1-12 months)	< 70
Children 1-10 yrs	$70 + (age \ x \ 2)$
Children > 10 yrs	< 90


Hypotension with hemorrhage: > 20-25% acute blood loss.

- Capillary refill
- Peripheral central temperature difference skin colour
- Level of consciousness
- Poor or absent peripheral pulses
- Urine output
- Blood pressure

Disability

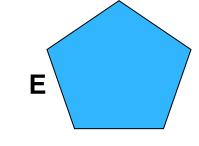
- * Quick evaluation of neurological function
- * Cortical functions

AVPU response scale / GCS score

Brain stem function

Pupillary equality, size, and response to light

Disability


A - Awake

D

- V responds to Verbal stimuli
- P responds to Painful stimuli
- **U U**nresponsive

Exposure

- Undress as appropriate, avoid exposure to cold environment
- * Look for deformities / bruises / bleeds
- * Take care of cervical spine in case of injuries
- Record core temperature and take corrective measures for temperature abnormalities, if detected

Respiratory Dysfunction By Severity

Respiratory Distress

- Tachypnea
- Tachycardia
- Increased respiratory effort
- Abnormal airway sounds
- Pale cool skin
- Changes in mental status

Respiratory Failure

- (Early) Marked tachypnea,
 (Late) Bradypnea, Apnea
- Bradycardia
- Increased/decreased/no respiratory effort
- Cyanosis
- Stupor/coma

Respiratory Dysfunction By Type

- * Upper airway obstruction
- Lower airway obstruction
- Parenchymal lung disease
- Disordered control of breathing

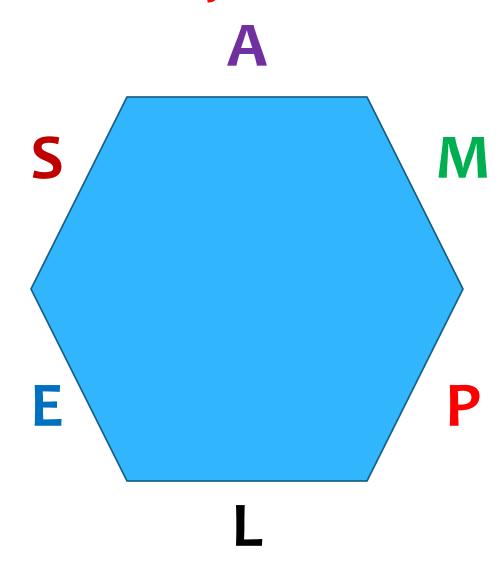
Circulatory Dysfunction By Severity

Compensated

- Tachycardia
- Cool pale diaphoretic skin
- Delayed CRT
- Weak peripheral pulses
- Narrow pulse pressure
- Oliguria

Hypotensive

- BP below 5th centile
- Change in mental status


Cardiac Dysfunction By Type

- * Cardiogenic shock
- * Hypovolemic shock
- * Obstructive shock
- * Distributive shock

Secondary Assessment

Signs & Symptoms

Allergies

Medications

Past Medical History

Last Meal

Events

Diagnostic Assessments to assess Respiratory & Circulatory problems

ABG

VBG

CBG

Hemoglobin

Lactate

Central Venous
Pressure
Monitoring

Invasive Arterial
Pressure
Monitoring

Chest Xray

ECG

Echocardiogram

PEFR

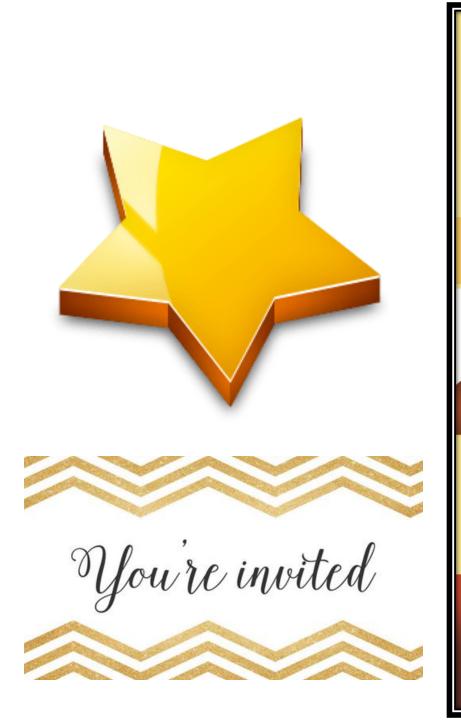
Central Venous
O2 saturation

Take Home Message

To Summarize...

- * Approach E I I approach
- * Evaluation -

Initial Impression A-B-C


Primary Assessment A-B-C-D-E

Secondary Assessment S-A-M-P-L-E

At any point → life-threatening problem → life saving interventions

Evaluate and manage first, diagnose later

Challenges in Trauma Care - Road to Success

International Congress & 9th Annual Conference of Indian Society for Trauma and Acute Care

Supported by

August 2018

18 & 19

Pre Conference Workshop Conference

Venue

IDA Scudder Memorial Auditorium

Madurai - Tuticorin Ring Road, Anuppanadi, Velammal Village, Madurai - 625 009.

Chief Patrons

Prof. Dr. M. C Misra **Emeritus Professor** JPN Apex Trauma Centre, AIIMS Ex. Director - AIIMS, New Delhi

Dr. S. Gurushankar Chairman Meenakshi Mission Hospital & Research Centre, Madurai

Dr. S. Raja Sabapathy Chairman Ganga Hospital, Coimbatore

Shri. M. V. Muthuramalingam Chairman Velammal Medical College Hospital &

Research Institute, Madurai

Organizing Committee

Prof. Suboth Kumar Vice President - ISTAC All India Institute of Medical Sciences - New Delhi

> Dr. Narendra Nath Jena Organizing Chairman Meenakshi Mission Hospital and Research Centre - Madurai

Prof. Amit Gupta Secretary - ISTAC All India Institute of Medical Sciences - New Delhi

> Dr. S.Senthilkumaran Organizing Secretary Be Well Hospitals - Erode

