

Invasive Ventilation Treatment

Prof Dr Başar CANDER

President of EPAT,

Necmettin Erbakan University, Department of Emergency Medicine

Konya, Turkey

07 November 2013

Ventilation

Ventilate is derived from Latin word "ventus" meaning wind

Key Points to Understand:

Indications for Invasive Mechanical Ventilation.

Settings for Invasive Ventilation and How to Adjust: FiO₂

- Modes
- Rate
- Tidal volume
- Airway pressures
- PEEP

Complications of Invasive Mechanical Ventilation.

Weaning From Invasive Mechanical Ventilation.

Indications for IMV

- Respiratory Failure
- Cardiopulmonary arrest
- Trauma (head, neck, and chest)
- Cardiovascular impairment (tumors, infection, emboli)
- A Neurological impairment (strokes, drugs, poisons, myasthenia gravis)
- Pulmonary impairment (infections, tumors, COPD, pneumonia)

Common indications for ventilation

Hypoxemic respiratory failure – 66%
 Acute exacerbation of COPD – 13%
 Neuromuscular disorders - 10%
 Coma - 10%

Data from Americas and Europe

Key concepts

Determinants of Oxygenation - Ventilator factors: * FiO2 (fraction of oxygen in inspired air) * Mean airway pressure * PEEP (positive end expiratory pressure) - Patient factors * V/Q (ventilation/ perfusion) mismatch * Shunt * Diffusion defect * Reduced mixed venous oxygen

Key concepts

Determinants of CO2 clearance - Ventilator factors * Rate * Tidal volume * Anatomical dead space - Patient factors * Physiological dead space * CO2 production

Alveolar minute ventilation

Adjust FiO₂ and PEEP according to PaO₂ and SpO₂

Adjust TV and rate according to PCO₂ and pH

Respiratory Failure:

Hypoxemic Failure:

V/Q Mismatch vs. Shunt vs. Hypoventilation

Ventilatory Failure:

Altered Respiratory Mechanics

PaO2<60mmHg on 100% NRB

Pneumonia ARDS Congestive Heart Failure Pulmonary Embolism Acute ↑ pCO2 with Resp. Acidosis

COPD/Asthma Acute Intoxication Neuromuscular Disease Sepsis Obesity Hypoventilation

Modes of ventilation Volume controlled

- Machine delivers a set volume irrespective of the pressure generated within the system
 Advantages
- predefined minute volume is guaranteed
 Disadvantages

- changes in mechanical properties of lung (resistance or compliance) can lead to high pressures

- Patient is unable to adjust breathing pattern to changes in ventilatory demand

Modes of ventilation Pressure controlled

- Ventilator applies a predefined target pressure to the airway during inspiration
 Advantages
 - decreased risk of barotrauma
 - Disadvantages

- with decreasing compliance or increasing resistance, tidal volume and minute ventilation fall

Volume control

TV, inspiratory Settings flow, I:E ratio

Peak inspiratory pressure, inspiratory time,

Pressure control

Constant 🌈 Tidal volume

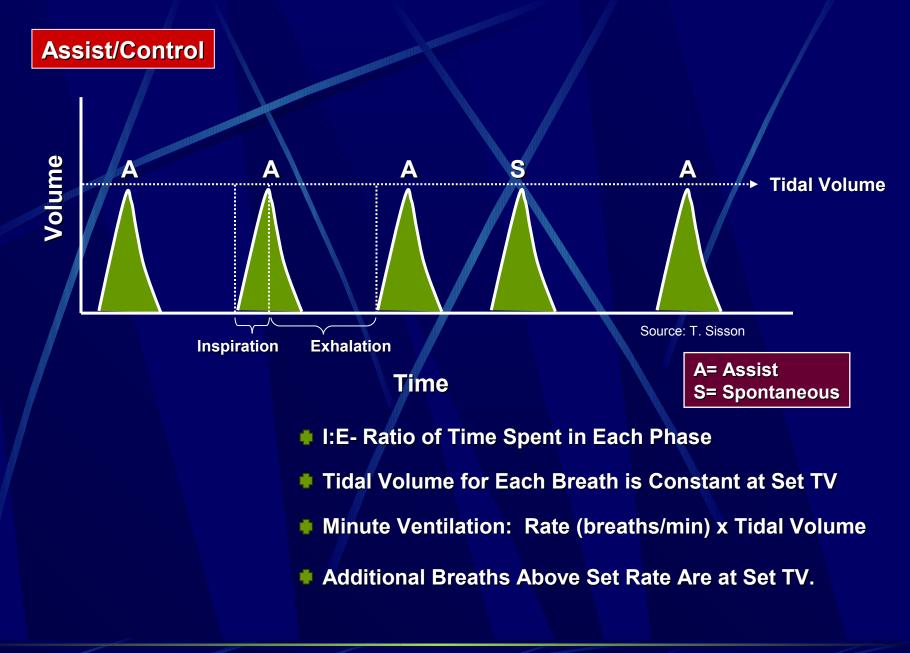
Maximum inspiratory pressure

Continuous mandatory ventilation (CMV)

- Intermittent mandatory ventilation (IMV)
- Assist control (A/C)
 Synchronized intermittent mandatory ventilation (SIMV)
- Pressure support

Continuous mandatory ventilation (CMV)

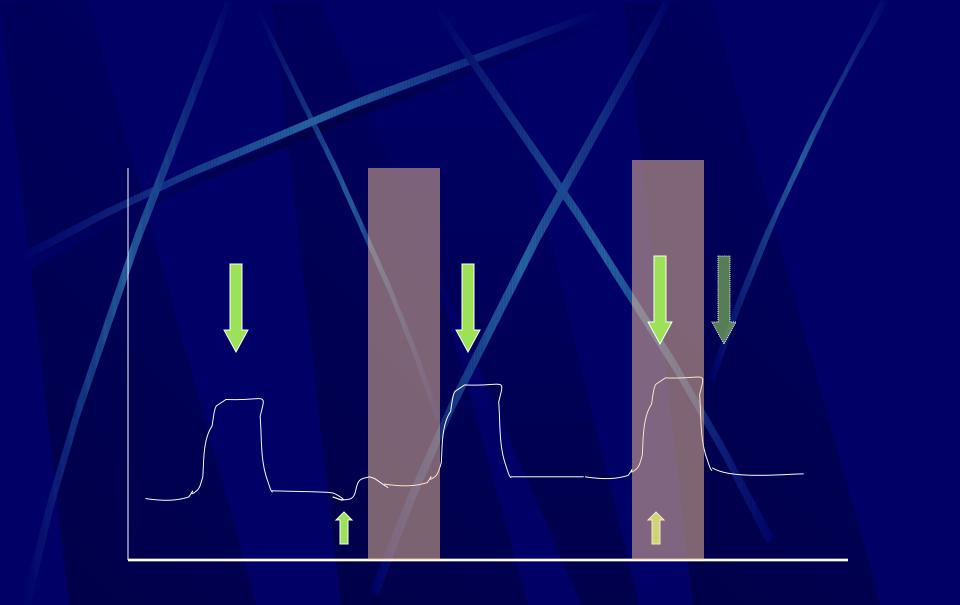
- Also known as controlled mechanical ventilation
- Rate, I:E ratio, volume determined entirely by machine and cannot be altered by patient effort
 - Used only in paralyzed patients



Assist control (A/C)

In addition to a preset number of mandatory breaths, the ventilator delivers additional full breaths whenever the patient has a spontaneous respiratory effort

Sensitivity of trigger important

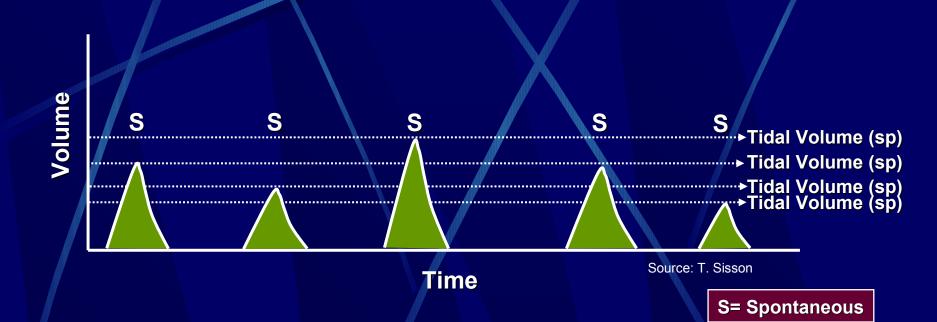


Synchronized intermittent mandatory ventilation (SIMV)

- The ventilator attempts to synchronize the set number of mandatory breaths with the patients respiratory efforts
 - The ventilator waits for a patient effort during a sensitive period before every breath. In its absence, it gives a controlled breath
- Spontaneous breaths outside of this sensitive period are unsupported
- Commonly used mode

Disadvantages of SIMV

Mandatory support can be set inappropriately low when SIMV is used as the vehicle for VCV or PCV.



Pressure support

Delivers a breath to a preset airway pressure when the patient makes an inspiratory effort
Cycles into expiration when inspiratory flow falls toward end of inspiration
Used along with SIMV
Useful for weaning

Pressure Support Ventilation

Tidal Volume: Varies with Each Breath. No Set Volume.
 Minute Ventilation: Rate (breaths/min) x Tidal Volume.

No Set Rate with Pressure Support.

Disadvantages of PSV

Potential for increased work of breathing at lower levels of PSV

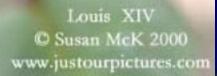
Reduction in mean airway pressure with decreased patient oxygenation

Newer modes

Adaptive support ventilation (ASV)
 Proportional assist ventilation (PAV)

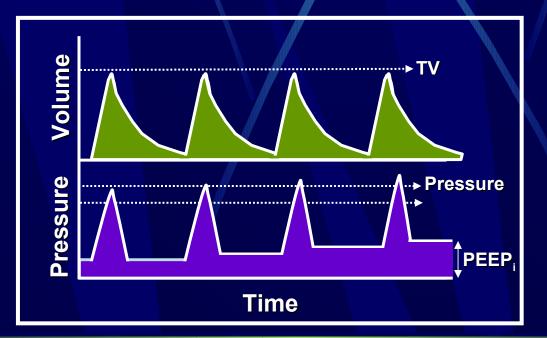
Others

Airway pressure release ventilation (APRV)


Pressure controlled inverse ratio ventilation

One of the key goals of mechanical ventilation is to decrease work of breathing

Improper ventilator settings can however increase work of breathing, increasing patient distress and worsening hemodynamics and metabolic parameters



Auto-PEEP (Intrinsic PEEP)

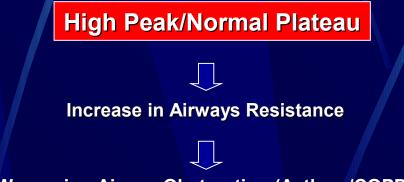
End Expiratory Pressure Does Not Return to Zero (or Set PEEP):

- Typically a Complication of Obstructive Lung Disease.
- Results From an Inadequate Expiratory Time.
- Patients with Asthma and COPD Need Prolonged Expiratory Phase to Empty Previous Breath.

Auto-PEEP (Intrinsic PEEP)

Problem: If Thoracic Pressure > Central Venous Pressure then Impairment in Venous Return Resulting in Hypotension.

Management: Prolong Exhalation (Change I:E Ratio) -Fewer Breaths/Minute (Increase Tidal Volume) -Shorter Inspiratory Time (Increase Inspiratory Flow Rate)



High Pressures:

Causes:

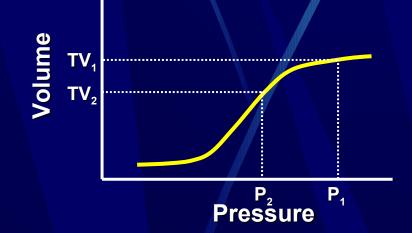
Problem: Barotrauma vs. Volutrauma

- Large Tidal Volumes ± High Lung Pressures Lead to Lung Injury.
- Improved Outcome in Acute Respiratory Distress Syndrome by Limiting Tidal Volumes.
- Barotrauma Can also Manifest as Pneumothorax.

Worsening Airway Obstruction (Asthma/COPD) Endotracheal Tube Obstruction

Biting Tube Mucus Plugging

High Peak/High Plateau


Decrease in Lung Compliance

Worsening Disease (ARDS/CHF) Pneumothorax Right Mainstem Intubation

High Pressures:

- Management:
 - Dependent on Cause, So Try to Determine Etiology.
 - If Due to Low Lung Compliance, Decrease Tidal Volume
 - Can Consider Pressure Cycled Ventilation.

- If Due to Increased Airway Resistance, Less of a Problem: Suctioning Bronchodilators, etc.

Over-Ventilation:

When Minute Ventilation Is Greater Than Patient Needs:

- Patient Will Make No Spontaneous Efforts.
- Suspect Over-ventilation When Patient Sits on Back-up Rate.
- Also Can Be Detected with an Arterial Blood Gas.

Management:

- Decrease Minute Ventilation (\downarrow TV or \downarrow Respiratory Rate).
- For A/C, Set Back-up Rate ~4 Breaths Below Total Respiratory Rate.

High FiO2:

Problem: High Levels of Oxygen Are Toxic to Patient's Lung.

- **Exact Level of safety Has Not Been Determined.**
- **≤** 50% FIO2 Is Goal.
- However, FIO2 Is not Decreased if it Results in Inadequate Oxygenation (Sat > 90% or pO2 > 60 mmHg).

Management:

- PEEP.
- Prone Positioning.
- Inhaled Nitric Oxide.

Complications of Invasive Mechanical Ventilation

Patient-Ventilator Dysynchrony:

Problem: Patient Discomfort and Anxiety, Impaired Oxygenation/Ventilation.

Management:

- Sedation: Benzodiazepines and Narcotic Analgesics
- Change Ventilator Mode.
- Paralysis: Increases Risk for ICU Myopathy.

Ventilator Associated Pneumonia:

Problem: Interruption of Upper Airway Defenses.

- Cough, Gag, Mucus Clearance.
- Colonization of the Airway/Upper GI Track with Pathogenic Bacteria.

Management:

- No Fool Proof Method to Prevent Vent-associated Pneumonia.
- Elevate Head of Bed to 30-45 degrees.

Remember

Ventilation is not an end in itself, it is only a form of organ support

The nuances of ventilation should not take away from the primary goal of treating the underlying condition

Who's Watching the Patient?

Pierson, IN: Tobin, Principles and Practice of Critical Care Monitoring

Default settings

TV-6-8ml/kg	
Rate – 15/min	
FiO2 – 100%	
PEEP – 5cmH2O	
Pressure support – 15cmH2O	
Ti – 1.0 sec	
Pramp – 50msec	

How to Begin Invasive Mechanical Ventilation: Settings

Options (for invasive ventilation):

Mode: Assist-Control (A/C), Intermittent Mandatory Ventilation (IMV), Pressure Support Ventilation (PS), Others.

FiO2: 21%-100%

Rate: 0-35

Tidal Volume: 4cc/kg to 10cc/kg

Inspiratory Flow Rate: 60L/mim to 120L/min

Monitor and re-adjust

🎼 FiO2-

- based on PaO2 and SpO2. maintain PaO2 60-90mmHg
- Aim to reduce FiO2 below 60%

PEEP-

- based on PaO2 and SpO2.
- Aim to reduce FiO2 below 60%.
- Can increase rapidly but can be reduced very gradually

Monitor and re-adjust

Rate –

A

- To keep CO2 in normal range-30 to 50 mmHg
- Exceptions: *†*ICP, acute phase of MACD
- Pressure support –
- Spontaneous breaths should have at least 80% of set TV
- Tidal volume –
- Adjust so that peak pressure < 30cm H2O Ti –
- clinical and graphical synchrony
- Pramp
 - increase only in obstructed airways

Daily Assessments of Invasive Mechanical Ventilation

Pressures: (Peak and Plateau).
Arterial Blood Gas: (Ventilation, Oxygenation)
Chest X-ray: Position of Endotracheal Tube
Auto-PEEP: Especially in Patient with Obstruction.
Patient Comfort and Position of Head.
Weaning Candidacy.

Weaning From Invasive Mechanical Ventilation

🔊 When?

Underlying Condition Has Improved: FIO2 ≤ 40% Minute Ventilation ≤ 10 L Mental Status Allows Patient to Follow Commands.

Pre-Weaning Assessment: Parameters

- Patient is Taken Off Support Briefly
- Several Parameters are Assessed: MV, TV, RR, Negative Inspiratory Force, Vital Capacity
 No Perfect Predictor for Success in Coming Off Ventilator.
 Rapid Shallow Breathing Index Commonly Used: RR/TV (Liters). < 105 Suggests Likely Success.

Weaning From Invasive Mechanical Ventilation

How?

- If Parameters Suggest that Patient is Ready, Begin Weaning Trial:

Spontaneous Trial: Patient Breaths on Own.

Duration of Spontaneous Trial: Depends on Circumstance ~ 2 Hours.

If Spontaneous Trial is Successful, Endotracheal Tube is Removed.

Adjuncts

Tracheobronchial hygiene

Sedation and analgesia

Stress ulcer prophylaxis

DVT prophylaxis

Key Points to Understand:

Indications for Invasive Mechanical Ventilation.

Settings for Invasive Ventilation and How to Adjust: FiO₂

- Modes
- Rate
- Tidal volume
- Airway pressures
- PEEP

Complications of Invasive Mechanical Ventilation.

Weaning From Invasive Mechanical Ventilation.

Thanks for attention...

Prof Dr Başar CANDER

basarcander@yahoo.com