
Sepsis and Lung Injury

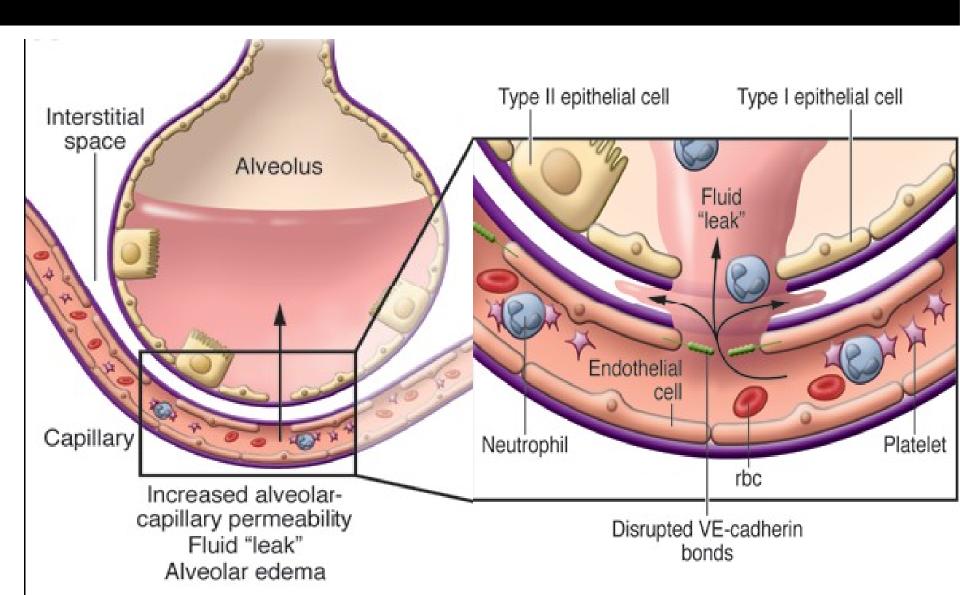
MABBASI M.D.

Emergency Medicine
Department
IUMS

- Sepsis syndrome
- Acute lung injury and adult respiratory distress syndrome

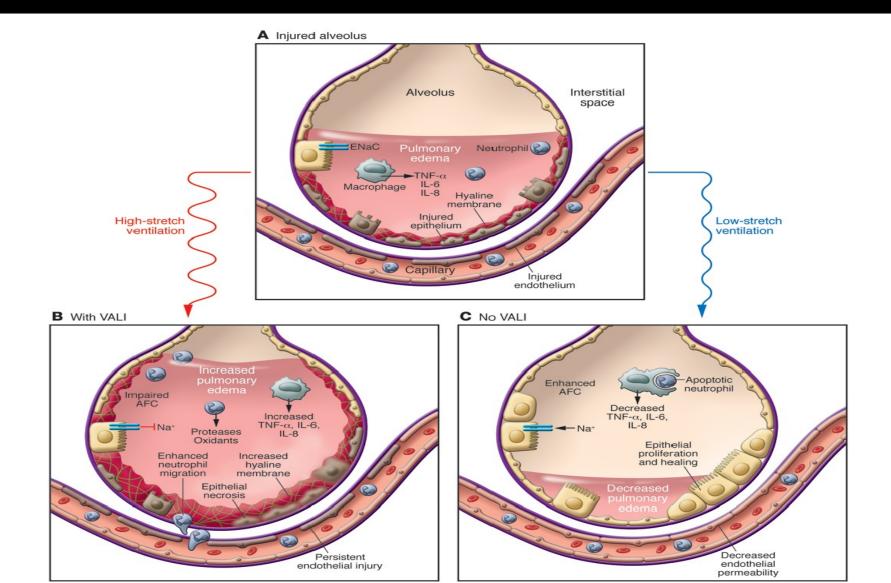
Sepsis Syndrome

Causes of ARDS


- Direct Injury
- Aspiration of Gastric Juice
- Pneumonia
- Near Drowning
- Toxic Inhalation
- Lung Contusion
- Smoke Inhalation
- Radiation Pneumonitis
- Oxygen Toxicity


- Indirect Injury
- Sepsis, SIRS
- Trauma (multiple fractures)
- Multiple Transfusions
- Cardio-pulm Bypass (rare)
- Fat Embolism
- CNS Injury
- Drugs

 Unfortunately, progression to ALI occurs in a third of patients with sepsis.


ALI is an extraordinarily complex lungassociated disorder characterized by a neutrophilic inflammatory response and associated with increased pulmonary vascular permeability.

Injury

Resolving

Is there any difference in the prognosis of ARDS in terms of it's etiology?

Mortality in sepsis versus non-sepsis induced acute lung injury

Jonathan E Sevransky et al

In this study those with sepsis vs. non-sepsisinduced ALI had a significantly higher crude mortality rate.

However, after adjustment for patient demographics, severity of illness and clinical factors, sepsis was not independently associated with more mortality.

Is there any way to recognize the progression of a sepsis to

ARDS?

Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome

Lorraine B Ware et al

• Although several plasma biomarkers have been studied in ARDS, the majority of studies have focused on prognosis, rather than diagnosis.

• Given the complex pathophysiology of ARDS, it is unlikely that a single biomarker will have adequate specificity for ARDS.

- RAGE(receptor for advanced glycation end products)
- Interleukin-8 (IL-8)
- Surfactant protein D (SPD)
- Club cell secretory protein (CC16, formerly known as Clara cell secretory protein)
- Interleukin-6 (IL-6)

Table 3 Comparison of models for diagnosis of ARDS using single biomarkers to a combined model utilizing the top five performing biomarkers

Model	All data (100 pairs)	Enrollment day cases (91 pairs)	Severe cases only (66 pairs)
	AUC (95% CI) ¹	AUC (95% CI) 1	AUC (95% CI) 1
Single marker models			
SPD	0.69 (0.6, 0.76)	0.71 (0.63, 0.79)	0.72 (0.62, 0.81)
RAGE	0.64 (0.56, 0.72)	0.68 (0.6, 0.75)	0.67 (0.57, 0.76)
IL8	0.61 (0.54, 0.69)	0.63 (0.55, 0.7)	0.64 (0.55, 0.73)
CC16	0.60 (0.52, 0.68)	0.60 (0.52, 0.68)	0.64 (0.55, 0.74)
IL6	0.59 (0.52, 0.67)	0.61 (0.53, 0.69)	0.63 (0.53, 0.72)
Multivariable model (includes SPD, RAGE, IL-8, CC16, IL6)	0.75 (0.7, 0.84)	0.78 (0.74, 0.87)	0.82 (0.77, 0.9)

¹All AUCs are bootstrap bias-corrected. All 95% CI are bootstrap CIs.

Treatment

There is no specific treatment for ALI.

Treatment is entirely supportive and aims to maintain adequate oxygenation and ventilation while minimizing secondary lung injury.

Non pharmacologic treatments

The Lung Protective Strategy

Alveolar Recruitment

Fluid Management Strategies

Extracorporeal Membranous Oxygenation

Pharmacologic treatments

- Corticosteroids
- β2-Agonists
- Furosemide
- Neuromuscular Blockade
- Surfactant Replacement Therapy
- Inhaled Nitric Oxide
- Ω-3 Fatty Acids
- Liquid Ventilation
- Activated Protein C

Metabolic consequences of sepsis-induced acute lung injury revealed by plasma 1H-nuclear magnetic resonance quantitative metabolomics and computational analysis.

Stringer KA et al

Am J Physiology (November 2010)