

ハイケッセ イー グンラ ベニム アディム ヨウスケ マツムラ ジャポニャダン ゲーディム

Invasive procedures: New weapons at hand

REBOA in ED

Yosuke Matsumura

Dept. of <u>Emergency</u> and CCM Chiba University

Japanese Society of <u>DIRECT</u>

<u>EVTM</u> Society Regional Director (Asia)

Former Clinical advisory board of Tokai Medical Products

Patent of "BackBoard Tree®" and patent royalty from SISM

Grant-in-Aid

- -Young Scientists (2019-2020), Japan Society for the Promotion of Science (JSPS), JP19KK18344
- -Scientific Research (C), Co-applicant (2018-2020), Japan Society for the Promotion of Science (JSPS), JP18K08881
- -Research Activity Start-up (2017-2018), Japan Society for the Promotion of Science (JSPS), JP18K08881

REBOA Practice in Japan

Resuscitative

Endovascular

Balloon

Occlusion of the

Aorta

Volume 71, Number 6, December 2011

PROCEDURES & TECHNIQUES

Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) as an Adjunct for Hemorrhagic Shock

Adam Stannard, MRCS, Jonathan L. Eliason, MD, and Todd E. Rasmussen, MD

Intra-Aortic Balloon Occlusion

日本外傷学会雑誌 第12巻(1998年)

臨床検討

鈍的腹部外傷の出血制御を目的とした 専用大動脈遮断カテーテルの臨床応用

石原晋

県立広島病院 救命救急センター Vol.12 No.1

Transbrachial arterial insertion of aortic occlusion balloon catheter in patients with shock from ruptured abdominal aortic aneurysm

Hitoshi Matsuda, MD, Yosuke Tanaka, MD, Yutaka Hino, MD, Ritsu Matsukawa, MD, Nobuchika Ozaki, MD, Kenji Okada, MD, Takuro Tsukube, MD, Yoshihiko Tsuji, MD, and Yutaka Okita, MD, Kobe, Japan

Objective: Of 125 surgical patients with abdominal aortic aneurysm (AAA) treated from 1999, 11 patients with deep shock from ruptured AAAs who underwent aortic occlusion balloon datheter (AOBC) insertion before laparotomy were studied.

Methods: With the patients under local anesthesia, the brachial artery was exposed and the balloon catheter was inserted into the thoracic aorta. The balloon was inflated halfway and pulled back gently to the orifice of the left subclavian artery, and was advanced with the aid of blood flow down to the abdominal aorta. After full inflation of the balloon, the catheter was pulled until the balloon was fixed at the proximal shoulder of the AAA.

Results: AOBC insertion was completed within 16.1 ± 5.1 minutes. Systolic blood pressure at presentation was 84.1 ± 31.7 mm Hg, deteriorated to 60.9 ± 15.4 mm Hg on arrival in the operating room, and increased significantly (P < .0001) to 123.4 ± 25.3 mm Hg after AOBC insertion. The balloon burst in three patients. Embolic complications were observed in two patients. There were three deaths, two associated with the balloon bursting. In nine patients whose shock was successfully controlled by AOBC, operative mortality was 11%.

Conclusion: Transbrachial arterial insertion of an AOBC may be useful to ameliorate hemorrhagic shock in patients with ruptured AAAs. (J Vasc Surg 2003;38:1293-6.)

2003

Transbrachial arterial insertion of aortic occlusion balloon catheter in patients with shock from ruptured abdominal aortic aneurysm

Gynecologic and

Obstetric Investigation

Hitoshi Matsuda Ozaki, MD, Ken Kobe, Japan

Objective: Of 125 shock from ruptur studied.

Methods: With the into the thoracic ac and was advanced was pulled until the Results: AOBC ins 31.7 mm Hg, deta .0001) to 123.4 ± observed in two pa was successfully co Conclusion: Transtruptured AAAs. (

Case Report

Gynecol Obstet Invest 2009;67:92–95 DOI: 10.1159/000164685

Elective Use of Aortic Balloon Occlusion in Cesarean Hysterectomy for Placenta Previa Percreta

Hitoshi Masamoto^a Hiroyuki Uehara^a Masaki Gibo^b Eiko Okubo^a Kaoru Sakumoto^a Yoichi Aoki^a

^aDepartment of Obstetrics and Gynecology, Faculty of Medicine, University of the Ryukyus, and

2009

ted

ry,

ter

±

? <

ere

ock

ith

^bDepartment of Radiology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan

Transbrachial arterial insertion of aortic occlusion balloon catheter in patients with shock from ruptured abdominal aortic aneurysm

Hitoshi Matsuda Ozaki, MD, Ken Kobe, Japan

Objective: Of 125 shock from ruptur studied.

Methods: With the into the thoracic ac and was advanced was pulled until the Results: AOBC ins 31.7 mm Hg, deta .0001) to 123.4 ± observed in two pawas successfully co Conclusion: Transtruptured AAAs. (

Case Report

Gynecol Obstet Invest 2009;67:92–95 DOI: 10.1159/000164685

Elective Use of Aortic Balloon

Occlusion in Cocasa Buston 2015, 10:1

for Placenta

Cocasa Buston 2015, 10:1

http://www.wjes.org/content/10/1/1

2015

ted

ry,

ter

±

Hitoshi Masamoto^a

Gynecologic and

Obstetric Investigation

H RESEARCH ARTICLE

Open Access

^aDepartment of Obstetrics and (

Kaoru Sakumoto^a Yoi

^bDepartment of Radiology, Facu

Retrospective study of the effectiveness of Intra-Aortic Balloon Occlusion (IABO) for traumatic haemorrhagic shock

Takayuki Irahara¹, Norio Sato^{2*}, Yuuta Moroe³, Reo Fukuda³, Yusuke Iwai³ and Kyoko Unemoto³

silence

Only small case series were published from Japan until 2015....

AAST 2014 PLENARY PAPER

?

Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta

Nobuyuki Saito, MD, Hisashi Matsumoto, MD, PhD, Takanori Yagi, MD, Yoshiaki Hara, MD, Kazuyuki Hayashida, MD, Tomokazu Motomura, MD, Kazuki Mashiko, MD, Hiroaki Iida, MD, Hiroyuki Yokota, MD, PhD, and Yukiko Wagatsuma, MD, MPH, DrPH, Inzai, Japan

*Saito N, et al. J Trauma Acute Care Surg 2015;78:897-904.

Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta

Nobuyuki Saito, MD, Hisashi Matsumoto, MD, PhD, Takanori Yagi, MD, Yoshiaki Hara, MD, Kazuyuki Hayashida, MD, Tomokazu Motomura, MD, Kazuki Mashiko, MD, Hirovaki Iida, MD, Hiroyuki Yokota, MD, PhD, and Yukiko Wagatsuma, MD, MPH, DrPH, Inzai, Japan

TABLE 2. A Comparison of the Patients' Characteristics, Clinical Data, and Treatment Between Groups 1 and 2

Variable	Group 1 $(n = 14)$	Group $2 (n = 10)$	p
Age, y	65 (41–73)	47 (32–65)	0.16
Male/female	6/8	7/3	0.36
ISS	40 (34–50)	50 (45–54)	0.06
Lower limb ischemia	2 (14.2)	0	0.21
Arterial injury caused by puncture	1 (7.1)	0	0.38
Lower limb amputation	3 (21.3)	0	0.11

Group 1 is the 24-hour survivor group (n = 14), and Group 2 is the 24-hour nonsurvivor group (n = 10). The data are presented as median values with an interquartile range or as a n (%). AIS, Abbreviated Injury Scale; TAE, transarterial embolization.

Lower limb ischemia	2 (14.2)
Arterial injury caused by puncture	1 (7.1)
Lower limb amputation	3 (21.3)

*Saito N, et al. J Trauma Acute Care Surg 2015;78:897-904.

AAST 2015 PLENARY PAPER

Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma:

A propensity score analysis

Junichi Inoue, MD, Atsushi Shiraishi, MD, PhD, Ayako Yoshiyuki, MD, Koichi Haruta, MD, Hiroki Matsui, MPH, and Yasuhiro Otomo, MD, PhD, Tokyo, Japan

*Inoue J, et al. J Trauma Acute Care Surg 2016;80:559-67.

Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis

Junichi Inoue, MD, Atsushi Shiraishi, MD, PhD, Ayako Yoshiyuki, MD, Koichi Haruta, MD, Hiroki Matsui, MPH, and Yasuhiro Otomo, MD, PhD, Tokyo, Japan

Outcome	With REBOA	Without REBOA
Primary outcome		
In-hospital mortality, %	61.8 (57.9–65.7)	45.3 (41.3–49.3)
Secondary outcomes		_
ED mortality, %	17.1 (14.1–20.1)	9.7 (7.3–12.1)
Door-to-blood transfusion time, median, min	50 (44–57)	64 (58–71)
Door-to-primary surgery time, median, min	97 (90–104)	110 (102–119)

^{*}Inoue J, et al. J Trauma Acute Care Surg 2016;80:559-67.

Research

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

Propensity score matching

Research

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

AKI Amputation High 24-h mortality

	Patients, No. (%)			
Variable	No-REBOA Group (n = 280)	REBOA Group (n = 140)	P Value	
Complications				
Acute kidney injury	9 (3.2)	15 (10.7)	.02	
Amputation of lower limb	2 (0.7)	5 (3.6)	.04	
Deep venous thrombosis	14 (5.0)	6 (4.3)	.42	
Pulmonary embolism	5 (1.8)	2 (1.4)	.28	
Stroke	3 (1.1)	2 (1.4)	.37	
Myocardial infarction	1 (0.4)	0	.51	
Extremity compartment syndrome	2 (0.7)	1 (0.7)	.39	
Overall mortality	53 (18.9)	50 (35.7)	.01	
Mortality in the ED	5 (1.8)	4 (2.9)	.35	
24-h Mortality	33 (11.8)	37 (26.4)	.01	
In-hospital mortality after 24 h	15 (5.4)	9 (6.4)	.21	

Lower limb amputation?

Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan

Yosuke Matsumura, ¹ Junichi Matsumoto, ² Hiroshi Kondo, ³ Koji Idoguchi, ⁴ Tokiya Ishida, ⁵ Yuri Kon, ⁶ Keisuke Tomita, ⁷ Kenichiro Ishida, ⁸ Tomoya Hirose, ⁹ Kensuke Umakoshi, ¹⁰ Tomohiro Funabiki, ¹¹ DIRECT-IABO Investigators

Fewer complications in Small sheath

Procedures and complications	Small group (n=53)	Large group (n=25)	Unusual group (n=3)
Access-related complications, n (%)			
Dissection	1 (1.9)	0 (0)	0 (0)
Pseudoaneurysm	0 (0)	0 (0)	0 (0)
Massive haematoma	1 (1.9)	0 (0)	0 (0)
Retroperitoneal haematoma	0 (0)	0 (0)	0 (0)
Thromboembolism	0 (0)	1 (4.0)	0 (0)
Leg ischaemia	0 (0)	0 (0)	2 (67)
Treatment for complication, n (%)			
Fasciotomy	0 (0)	0 (0)	2 (67)
Amputation	0 (0)	0 (0)	2 (67)
PTA	0 (0)	1 (4.0)	0 (0)

Higher mortality?

How should we use REBOA?

REBOA Algorithms

Basic endovascular skills for trauma course: Bridging the gap between endovascular techniques and the acute care surgeon

Megan Brenner, MD, MS, RPVI, Melanie Hoehn, MD, Jason Pasley, DO, Joseph Dubose, MD, Deborah Stein, MD, MPH, and Thomas Scalea, MD, Baltimore, Maryland

The role of REBOA in the control of exsanguinating torso hemorrhage

Walter L. Biffl, MD, Charles J. Fox, MD, and Ernest E. Moore, MD, Denver, Colorado

Algorithm for Control of Torso Hemorrhage

ALGORITHM 2 - REBOA Presenter: Kenji Inaba

How many **REBOA Algorithms** do we have to learn?

Trauma Strategy > REBOA Algorithms

- 1. RT+REBOA
- 2. Early access, Undelayed & Short occlusion
- 3. Education & Research

Case

17M, Fall from 11th story

Collapsed 5 mins before arrival CPR initiated

OR
Angio
CT
ICU

ROSC after 8 minutes of GPR

CT
ICU FAST exam negative

ER
OR
Angio
CT

FAST positive@RUQ

-> Laparotomy First

OR
Angio
CT
ICU

ER
OR
Angio

P-REBOA < 20min

Angio Liver injury (Grade II)

- -bleeding at round lig.
- -No other organ injury

Retroperitoneal hematoma Expanging

Perihepatic Packing& Open abdomen

Embolization

ER
OR
Angio
CT
ICU

ER OR Angio CT ICU

ER OR Angio CT IČU

ER OR

Angio CT ICU

ER
OR
Angio
CT
ICU

Re-closure of Chest wall

1. RT+REBOA

- 2. Early access, Undelayed & Short occlusion
- 3. Education & Research

ER RT + Access → REBOA
 OR P-REBOA → Deflation < 20min
 Angio Damage Conctrol IR
 CT Reassessment: Chest
 ICU Reclosure

RT

REBOA

Speedy & Definite

Less invasive & Adjustable

Invasive New chest wound

Less speedy CFA puncture Tortuous Aorta

Chest wall bleeding
Spinal artery injury
Hypothermia
Pyothorax

Leg ischemia Visceral artery injury Balloon migration

RT

REBOA

Speedy & Definite

Less invasive & Adjustable

Invasive New chest would

Less speedy

CFA puncture

Tortuous Aorta

Chest wall bleeding
Spinal artery injury
Hypothermia
Pyothorax

Leg ischemia
Visceral artery injury
Balloon migration

Uncertainty in **Tortuous aorta Advanced age**

Critical Care

RESEARCH

Open Access

CrossMark

Resuscitative endovascular balloon occlusion of the aorta versus aortic cross clamping among patients with critical trauma: a nationwide cohort study in Japan

Toshikazu Abe^{1,2*}, Masatoshi Uchida¹, Isao Nagata¹, Daizoh Saitoh³ and Nanako Tamiya¹

REBOA > RT a Analysis Mortality at discharge 95% CI Unadjusted 0, 220 0, 138 0, 349 (n=840/903) 0. 129 0. 700 Adjusted RTS (n=744/903) Adjusted ISS 0.116 0.303 (n=840/903) Adjusted TRISS 0.502 0 309 0 190 (n=830/903) After propensity score matching* 0, 130 0, 523 (n=280/304) 0.01 0.1 Odds Ratio b Analysis Mortality at ED 95% CI Unad justed (n=889/903) Adjusted RTS 0.408 (n=783/903) 0,382 Adjusted ISS 0, 205 (n=889/903) Adjusted TRISS 0, 256 0.484 (n=878/903) After propensity score matching* 0.182 0.106 0.313 (n=299/304) 0.01 0.1 10 Odds Ratio

Diagnosis Procedure Combination Database

ORIGINAL ARTICLE

Resuscitative endovascular balloon occlusion of the aorta or resuscitative thoracotomy with aortic clamping for noncompressible torso hemorrhage:

A retrospective nationwide study

N.S.

in ICU-free days (χ^2 test, p=0.1935) (Table 2). In the propensity score—adjusted Cox regression analysis, there was no significant difference between the REBOA and RT groups with respect to in-hospital mortality (hazard ratio, 0.94; 95% confidence interval [CI], 0.60–1.48; p=0.7917). In the propensity

Abe T et al. Crit Care 2016;20:400

Aso S et al. J Trauma Acute Care Surg 2017;82:910

ORIGINAL SCIENTIFIC ARTICLES

Resuscitative Endovascular Balloon
Occlusion of the Aorta and Resuscitative
Thoracotomy in Select Patients with Hemorrhagic
Shock: Early Results from the American Association
for the Surgery of Trauma's Aortic Occlusion in
Resuscitation for Trauma and Acute Care
Surgery Registry

No CPR
SBP <90mmHg

REBOA > RT

[9.1% (26/285)]

[RT = 65.4% (17/26); REBOA = 34.6% (9/26)]

Survival beyond ED

$$RT = 47.1\% (8/17)$$

REBOA =
$$100\% (9/9)$$

$$p = 0.009$$

Survival to discharge

$$RT = 0\% (0/17)$$

$$REBOA = 44.4\% (4/9)$$

$$p = 0.008$$

RT vs. REBOA?

Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan

Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators

RT+REBOA!

An evidence-based approach to patient selection for emergency department thoracotomy: A practice management guideline from the Eastern Association for the Surgery of Trauma

In patients who present pulseless to the Emergency Department with signs of life after blunt injury, we conditionally recommend resuscitative Emergency Department thoracotomy. Conditional Recommendation

In patients who present pulseless to the Emergency Department without signs of life after blunt injury, we conditionally recommend against resuscitative Emergency Department thoracotomy. Conditional Recommendation

RT is not strongly recommended in pulseless blunt trauma

*Seamon MJ et al. J Trauma Acute Care Surg. 2015;79:159-73.

Aug 2011-Dec 2015, 18 Hospitals

Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan

Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators

Non-traumatic hemorrhage is controlled with REBOA in acute phase then mortality increases gradually by non-hemorrhagic causes: DIRECT-IABO registry in Japan

Y. Matsumura^{1,7} · J. Matsumoto² · K. Idoguchi³ · H. Kondo⁴ · T. Ishida⁵ · Y. Kon⁶ · K. Tomita⁷ · K. Ishida⁸ · T. Hirose⁹ · K. Umakoshi¹⁰ · T. Funabiki¹¹ · DIRECT-IABO investigators

Aug 2011-Dec 2015, 18 Hospitals

Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan

Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators

Non-traumatic hemorrhage is controlled with REBOA in acute phase then mortality increases gradually by non-hemorrhagic causes: DIRECT-IABO registry in Japan

Y. Matsumura^{1,7} J. Matsumoto² · K. Idoguchi³ · H. Kondo⁴ · T. Ishida⁵ · Y. Kon⁶ K. Tomita⁷ · K. Ishida⁸ · T. Hirose⁹ · K. Umakoshi¹⁰ · T. Funabiki¹¹ · DIRECT-IABO investigators

RT+REBOA population

Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan

Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators

	24-h nonsurvivors $(n = 24)$	24-h survivors $(n=6)$	P
CPR before REBOA	16 (67)	6 (100)	0.16
At field	12 (50)	5 (83)	
On arrival	8 (33)	3 (50)	
Preocclusion	11 (46)	3 (50)	

RT+REBOA may give a chance even in pulseless blunt trauma

Conversion prevents **hypothermia**Closing chest prevents **chest wall** bleeding

*Matsumura Y, et al. Eur J Emerg Med 2018;25:348-354.

- 1. RT+REBOA
- 2. Early access, Undelayed & Short occlusion
- 3. Education & Research

ER RT + Access → REBOA
 OR P-REBOA → Deflation <20min
 Angio Damage Control IR
 CT Reassessment: Chest
 ICU Reclosure

Portable **Bilateral arterial access** 4Fr 7Fr Large venous access **MTP** initiated

"TOP STENT"

Chapter 1

It is all about the vascular access

Yosouke Matsumura, Junichi Matsumoto, Lauri Handolin, Lars Lönn, Jonny Morrison, Joe DuBose and Tal Hörer

As a modification of the traditional "ABCDE" mnemonic advocated in the ATLS protocol approach to initial trauma evaluation and treatment, an EVTM enabled provider might consider using an "<u>AABCDE</u>" (airway and simultaneous vascular access, breathing, circulation etc.). Why might the use of the AABCDE-centered thought process prove useful? Very simply: this

Arterial access

Advantage

Disadvantage

Upsize to REBOA

Early IR

Vascular injury

A-line

Blood sampling

Hematoma

Delayed access can lead a catastrophe

...Less palpable

... Cardiac arrest

...Hematoma

ORIGINAL ARTICLE

Early arterial access for resuscitative endovascular balloon occlusion of the aorta is related to survival outcome in trauma

Yosuke Matsumura, MD, PhD, Junichi Matsumoto, MD, PhD, Hiroshi Kondo, MD, PhD, Koji Idoguchi, MD, Tokiya Ishida, MD, Yohei Okada, MD, Yuri Kon, MD, Kazuyuki Oka, MD, Kenichiro Ishida, MD, Yukitoshi Toyoda, MD, Tomohiro Funabiki, MD, PhD, and DIRECT-IABO Investigators, Chiba, Japan

*Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511.

From Aug 2011-Dec 2016, 23 Hospitals

Characteristics	Nonsurvivors (n = 49)	Survivors (n = 60)	p
ISS	43 (34–50)	33 (21–42)	< 0.001
Head AIS score	3 (0–5)	0 (0-3)	0.11
Chest AIS score	4 (2–4)	3 (0-4)	0.14
Abdomen AIS score	2 (0-3)	3 (0-4)	0.10
Extremities or pelvis AIS score	4 (2–5)	3 (0-4)	0.039
CPR, n (%)			
Prehospital	5 (10.2)	1 (1.7)	0.088
Arrival	6 (12.2)	1 (1.7)	0.045
Occlusion	6 (12.2)	3 (5.1)	0.29
Vital signs on arrival			
RR, /min	24 (13–30)	24 (16–30)	0.95
HR. /min	100 (80–128)	105 (90-126)	0.75
SBP, mm Hg	74 (48–100)	90 (72–115)	0.20
Preocclusion SBP, mm Hg (n = 108)	58 (40–80)	76 (61–90)	0.018
Postocclusion SBP, mm Hg (n = 108)	102 (83–124)	116 (102–137)	0.023
P-REBOA, $n (\%) (n = 89)$	21 (55.3)	40 (78.4)	0.023
Duration of aortic occlusion, min	999AT		
Total duration of occlusion	63 (40–99)	35 (20–70)	0.014
(n - 89)			
Duration of P-REBOA $(n = 89)$	5.5 (0–74)	20 (1.5–47)	0.30

Characteristics	Nonsurvivors (n = 49)	Survivors (n = 60)	p
Injury to arrival, min (n = 108)	35 (29–50)	45 (32–54)	0.019
Arrival to access, min (n = 95)	47 (23–83)	25 (10-57)	0.052
Arrival to inflation, min (n = 106)	61 (28–97)	58 (30–101)	1.00
Arrival to definitive hemostasis, min (n = 97)	88 (56–113)	78 (55–121)	0.77

^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511.

	OR	95% CI	p
Arrival to access, min	0.989	0.979-0.999	0.034
ISS	0.944	0.907 - 0.982	0.0039

Binary logistic regression analysis was conducted with 30-day survival as the dependent variable and preocclusion SBP, total duration of occlusion, arrival to access, arrival to definitive hemostasis, and ISS as the independent variables.

^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511.

$0.989^{10} = 90\%$

^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511.

AUC 0.654 Sensitivity 79.5% Specificity 47.1%

Cutoff 21.5 min

^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511.

Benefit of Early Access in REBOA patients

- 1. RT+REBOA
- 2. Early access, Undelayed & Short occlusion
- Education & Research

ER RT + Access → REBOA
 OR P-REBOA → Deflation < 20min
 Angio DCIR
 CT Reassessment: Chest&Liver
 ICU Reclosure & VPC

Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan

Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators

REBOA patient:

Who survived? Who benefit?

Characteristics before	nonsurvivors	24-h survivors	
during occlusion	(n=30)	(n = 46)	P
Characteristics before and	during occlusion		
Age (years)	68 (41-77)	58 (43-65)	0.10
Male	16 (53)	35 (76)	0.048
Preocclusion status			
Injury severity score	37 (34-51)	34 (22-48)	0.037
Head AIS	0 (0-5.0)	2.5 (0-4.0)	0.96
Chest AIS	3.0 (3.0-4.0)	3.0 (0-4.0)	0.13
Abdominal AIS	2.0 (0-3.0)	3.0 (0-4.0)	0.071
Extremity or pelvis AIS	4.0 (2.0-5.0)	3.0 (0-4.0)	0.054
Arrival to occlusion (min)	60 (28–92)	60 (26-83)	0.73
CPR before REBOA	7 (23)	4 (8.7)	0.10
Preocclusion SBP (mmHg)	43 (40-80)	72 (55–91)	0.002
Postocclusion SBP (mmHg)	100 (90–120)	120 (100-145)	0.007
Hemodynamics after RE	BOA		
Improvement in hemodynamics	25 (83)	42 (91)	0.31
Achievement of stability	18 (60)	44 (96)	< 0.001

Characteristics before	and 24-h nonsurvivors	24-h survivors	
during occlusion	(n=30)	(n = 46)	P
Management during occlus	ion		
Partial occlusion	14 (54)	26 (70)	0.20
Duration of aortic occlus	ion (min)	and the second articles are	
Total duration of occlusion	60 (40–99)	31 (11–70)	0.010
Duration of partial occlusion	5 (0-35)	11 (0-44)	0.47

Undelayed (SBP 70mmHg) Shorter (30 min) occlusion

		C*	
Patient	Advanced	Middle- advanced	Young
Mechanism	Blunt >>> Penetrating	Blunt >> Penetrating	Blunt > Penetrating
Trauma team	Multi- disciplinary	Multi- disciplinary	Surgeon- centered
Resuscitation	EM	EM	Surgeon, EM

GUIDELINES FOR REBOA USE AND IMPLEMENTATION

- ▶ REBOA protocols should be developed in conjunction with vascular surgery.
- REBOA should be performed by an acute care surgeon or an interventionalist (vascular surgeon or interventional radiologist) trained in REBOA.
- An acute care surgeon must be immediately available to definitively address the specific cause of hemorrhage to avert the dire complications of truncal and or spinal cord ischemia from prolonged aortic occlusion.¹⁰⁻¹²
- ► Emergency medicine (EM) physicians with added certification in critical care (EMCC) trained in REBOA, may train and perform REBOA in conjunction with an acute care surgeon or vascular surgeon trained in REBOA, as long as the surgeon(s) is/are immediately available to definitively control the focused source of bleeding.

Joint statement from the American College of Surgeons Committee on Trauma (ACS COT) and the American College of Emergency Physicians (ACEP) regarding the clinical use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA)

*Brenner M, et al. Trauma Surgery & Acute Care Open2018;3:e000154.

EM performs REBOA

Operator specialty, n (%)	
EM familiar with access	62 (44)
EM-IR	71 (50)
IR	6 (4.2)
Others	3 (2.1)

Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan

Yosuke Matsumura, ¹ Junichi Matsumoto, ² Hiroshi Kondo, ³ Koji Idoguchi, ⁴ Tokiya Ishida, ⁵ Yuri Kon, ⁶ Keisuke Tomita, ⁷ Kenichiro Ishida, ⁸ Tomoya Hirose, ⁹ Kensuke Umakoshi, ¹⁰ Tomohiro Funabiki, ¹¹ DIRECT-IABO Investigators

EM performs REBOA

Operator specialty, n (%)	
EM familiar with access	62 (44)
EM-IR	71 (50)
First Responde should perform R	h (4 /)
Others Silouid Perioriii K	3 (2.1)

Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan

Yosuke Matsumura, ¹ Junichi Matsumoto, ² Hiroshi Kondo, ³ Koji Idoguchi, ⁴ Tokiya Ishida, ⁵ Yuri Kon, ⁶ Keisuke Tomita, ⁷ Kenichiro Ishida, ⁸ Tomoya Hirose, ⁹ Kensuke Umakoshi, ¹⁰ Tomohiro Funabiki, ¹¹ DIRECT-IABO Investigators

EM performs REBOA

*Matsumura Y, et al. Emerg Med J 2017;34:793

See Bifurcation with US

Review Article

Echocardiographic guidance for diagnostic and therapeutic percutaneous procedures

*Nguyen CT, et al. Cardiovasc Diagn Ther 2011;1:11-36.

See Guidewire in Aorta

*Ogura T, et al. J Emerg Med 2017;52:715-22

		C*	
Patient	Advanced	Middle- advanced	Young
Mechanism	Blunt >>> Penetrating	Blunt >> Penetrating	Blunt > Penetrating
Trauma team	Multi- disciplinary	Multi- disciplinary	Surgeon- centered
Resuscitation	EM	EM	Surgeon, EM

Geriatric Blunt

Coagulopathy Tortuous aorta

- 1. RT+REBOA
- 2. Early access, Undelayed & Short occlusion
- 3. Education & Research

Endovascular workshop

2011 -

2013 -

2014 -

2016 -

2018 -

EM, IR, Surgeon

Surgeon Surgeon

EM, Paramed

Surgeon

Creating an Educational Program in the **Endovascular and Hybrid Intervention; Experiences from the Japanese Society** of Diagnostic and Interventional Radiology in Emergency, Critical Care, and Trauma (DIRECT)

Tomohiro Funabiki MD PhD1, Yosuke Matsumura MD PhD2, Hiroshi Kondo MD PhD3, Koji Idoguchi MD4, Junichi Matsumoto MD PhD5; Japanese Society of Diagnostic and Interventional Radiology in Emergency, Critical Care, and Trauma (DIRECT)

Emergency and Critical Care Center, Saiseikai Yokohamashi Tobu Hospital, Japan ² Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Japan Department of Radiology, Telkyo University School of Medicine, Japan Osaka Prefecture Senshu Trauma and Critical Care Medical Center, Rinku General Medical Center, Japan

Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Japan

REBOA & catheter technique

Virtual fluoroscopy
3D vessel model
Over-the-wire technique

"Hybrid" simulation

REBOA

Selective **balloon** catheter **NBCA** embolization

Combined with surgery

Advanced Surgical Skills for Exposure in Trauma Course

Jointed with Japanese Society of DIRECT

Vascular Access and Placement of REBOA Catheter;
-vascular anatomy

& safe procedure

2011 -

2013 -

2014 -

2016 -

2018 -

EM, IR, Surgeon

Surgeon Surgeon

EM, Paramed

Surgeon

2011 -

2013 -

2014 -

2016 -

2018 -

EM, IR, Surgeon

Surgeon Surgeon

EM, Paramed

Surgeon

アウジウ ウズレ

Endovascular Resuscitation and Trauma Management

2011 -

2013 -

2014 -

2016 -

2018 -

EM, IR, Surgeon

Surgeon Surgeon

EM, **Paramed**

Surgeon

2011 -

2013 -

2014 -

2016 -

2018

EM, IR, Surgeon

Surgeon Surgeon

EM, Paramed

Surgeon

The 1st
Endovascular
Training for
REBOA
Hands-on Course

- RT+REBOA
- 2. Early access, Undelayed & Short occlusion
- 3. Education & Research

AAST 2015 PLENARY PAPER

Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis

Junichi Inoue, MD, Atsushi Shiraishi, MD, PhD, Ayako Yoshiyuki, MD, Koichi Haruta, MD, Hiroki Matsui, MPH, and Yasuhiro Otomo, MD, PhD, Tokyo, Japan

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

AKI Amputation High 24-h mortality

	Patients, No. (%)		
Variable	No-REBOA Group (n = 280)	REBOA Group (n = 140)	P Value
Complications			
Acute kidney injury	9 (3.2)	15 (10.7)	.02
Amputation of lower limb	2 (0.7)	5 (3.6)	.04
Deep venous thrombosis	14 (5.0)	6 (4.3)	.42
Pulmonary embolism	5 (1.8)	2 (1.4)	.28
Stroke	3 (1.1)	2 (1.4)	.37
Myocardial infarction	1 (0.4)	0	.51
Extremity compartment syndrome	2 (0.7)	1 (0.7)	.39
Overall mortality	53 (18.9)	50 (35.7)	.01
Mortality in the ED	5 (1.8)	4 (2.9)	.35
24-h Mortality	33 (11.8)	37 (26.4)	.01
In-hospital mortality after 24 h	15 (5.4)	9 (6.4)	.21

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

Comments & Response

Complete manuscript title: Minimizing the bias in the observational study in the REBOA patients

Authors: Yosuke Matsumura, MD, PhD¹, Atsushi Shiraishi, MD, PhD²

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

SBP 109 mmHg GCS 14

	Patients, No. (%)		
Variables	No-REBOA Group (n = 593 678)	REBOA Group (n = 140)	P Value
Age, mean (SD), y	53 (21)	44 (20)	<.001
Male sex	379 954 (64.0)	104 (74.3)	.01
White race	436 353 (73.5)	89 (63.6)	.003
Vital signs in ED			
SBP, mean (SD), mm Hg	138.0 (27.0)	108.8 (32.7)	<.001
HR, mean (SD), bpm	88.8 (20.0)	102.0 (30.0)	<.001
GCS score, median (IQR)	15 (15-15)	14 (3-15)	<.001
Injury parameters			
Blunt MOI	565 181 (95.2)	129 (92.1)	.11
ISS, median (IQR)	15 (9-17)	29 (18-38)	<.001
h-AIS score, median (IQR)	0 (0-2)	0 (0-3)	<.001
			201

Joseph B et al. JAMA surg 2019

JAMA Surgery | Original Investigation
Nationwide Analysis of Resuscitative Endovascular Balloon
Occlusion of the Aorta in Civilian Trauma

SBP 114 mmHg GCS 15 vs. 3 Head AIS 0 vs.2

	Patients, No. (%)		
Variable	Survived (n = 90)	Died (n = 50)	P Value
Age, mean (SD), y	42 (19)	48.2 (19)	.12
Male sex	57 (63.3)	32 (64.0)	.20
Vital signs in the ED			
SBP, mean (SD), mm Hg	114 (32)	98 (31)	.006
HR, mean (SD), bpm	99.0 (27.0)	109.4 (25.0)	.02
GCS score, median (IQR)	15 (13-15)	3 (3-13)	.04
Injury parameters			
Blunt MOI	82 (91.1)	47 (94.0)	.54
ISS, median (IQR)	27 (17-34)	38 (26-50)	.043
h-AIS, median (IQR)	0 (0-2)	2 (0-4)	.002

Joseph B et al. JAMA surg 2019

JAMA Surgery | Original Investigation
Nationwide Analysis of Resuscitative Endovascular Balloon
Occlusion of the Aorta in Civilian Trauma

1 unit of Transfusion24h

	Patients, No. (%)		
Variable	Survived (n = 90)	Died (n = 50)	P Value
Transfusion requirements, median (IQR), U			
PRBCs			
4 h	0 (0-5)	12 (7-19)	<.001
24 h	1 (1-6)	14 (9-22)	<.001
Platelets			
4 h	0 (0-1)	2 (1-3)	<.001
24 h	1 (0-2)	3 (2-6)	<.001
Plasma			
4 h	0 (0-3)	9 (4-15)	<.001
24 h	1 (1-5)	13 (6-20)	<.001

Joseph B et al. JAMA surg 2019

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

First, the patients were too stable to require REBOA, This suggests unnecessary REBOA placement in a stable population, leading to unnecessary amputation and AKI.

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

Physiological derangement in REBOA cases might increase the apparent mortality rate, while the resuscitation time bias might decrease the apparent mortality in the REBOA group

JAMA Surgery | Original Investigation

Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma

Ideally, time-dependent propensity-score-matching analysis should be performed, with use of sensitivity analysis, e.g., instrumental variable analysis, to adjust for unmeasured confounders.

Prospective observational study on the effectiveness and safety of resuscitative endovascular balloon occlusion of the aorta in traumatic shock due to torso hemorrhage

PI: Yosuke Matsumura

The Japanese Association for The Surgery of Trauma

Conclusion

- 1. RT+REBOA
 Chance in Blunt Cardiac Arrest
- 2. Early access, Undelayed & Short occlusion Access < 20min, SBP70mmHg, < 30min
- 3. Education & Research Endo. workshop & International Multicenter study

Let's Proceed Education & Research together!

yousuke.jpn4035@gmail.com

Let's Proceed Education & Research together!

İlginiz için teşekkür ederim!

yousuke.jpn4035@gmail.com