ハイケッセ イー グンラ ベニム アディム ヨウスケ マツムラ ジャポニャダン ゲーディム Invasive procedures: New weapons at hand # **REBOA in ED** ### **Yosuke Matsumura** Dept. of <u>Emergency</u> and CCM Chiba University Japanese Society of <u>DIRECT</u> <u>EVTM</u> Society Regional Director (Asia) Former Clinical advisory board of Tokai Medical Products Patent of "BackBoard Tree®" and patent royalty from SISM Grant-in-Aid - -Young Scientists (2019-2020), Japan Society for the Promotion of Science (JSPS), JP19KK18344 - -Scientific Research (C), Co-applicant (2018-2020), Japan Society for the Promotion of Science (JSPS), JP18K08881 - -Research Activity Start-up (2017-2018), Japan Society for the Promotion of Science (JSPS), JP18K08881 # **REBOA Practice in Japan** Resuscitative **E**ndovascular Balloon Occlusion of the **A**orta Volume 71, Number 6, December 2011 PROCEDURES & TECHNIQUES # Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) as an Adjunct for Hemorrhagic Shock Adam Stannard, MRCS, Jonathan L. Eliason, MD, and Todd E. Rasmussen, MD Intra-Aortic Balloon Occlusion ## 日本外傷学会雑誌 第12巻(1998年) 臨床検討 鈍的腹部外傷の出血制御を目的とした 専用大動脈遮断カテーテルの臨床応用 石原晋 県立広島病院 救命救急センター Vol.12 No.1 # Transbrachial arterial insertion of aortic occlusion balloon catheter in patients with shock from ruptured abdominal aortic aneurysm Hitoshi Matsuda, MD, Yosuke Tanaka, MD, Yutaka Hino, MD, Ritsu Matsukawa, MD, Nobuchika Ozaki, MD, Kenji Okada, MD, Takuro Tsukube, MD, Yoshihiko Tsuji, MD, and Yutaka Okita, MD, Kobe, Japan Objective: Of 125 surgical patients with abdominal aortic aneurysm (AAA) treated from 1999, 11 patients with deep shock from ruptured AAAs who underwent aortic occlusion balloon datheter (AOBC) insertion before laparotomy were studied. Methods: With the patients under local anesthesia, the brachial artery was exposed and the balloon catheter was inserted into the thoracic aorta. The balloon was inflated halfway and pulled back gently to the orifice of the left subclavian artery, and was advanced with the aid of blood flow down to the abdominal aorta. After full inflation of the balloon, the catheter was pulled until the balloon was fixed at the proximal shoulder of the AAA. Results: AOBC insertion was completed within 16.1 ± 5.1 minutes. Systolic blood pressure at presentation was 84.1 ± 31.7 mm Hg, deteriorated to 60.9 ± 15.4 mm Hg on arrival in the operating room, and increased significantly (P < .0001) to 123.4 ± 25.3 mm Hg after AOBC insertion. The balloon burst in three patients. Embolic complications were observed in two patients. There were three deaths, two associated with the balloon bursting. In nine patients whose shock was successfully controlled by AOBC, operative mortality was 11%. Conclusion: Transbrachial arterial insertion of an AOBC may be useful to ameliorate hemorrhagic shock in patients with ruptured AAAs. (J Vasc Surg 2003;38:1293-6.) #### 2003 # Transbrachial arterial insertion of aortic occlusion balloon catheter in patients with shock from ruptured abdominal aortic aneurysm Gynecologic and Obstetric Investigation Hitoshi Matsuda Ozaki, MD, Ken Kobe, Japan Objective: Of 125 shock from ruptur studied. Methods: With the into the thoracic ac and was advanced was pulled until the Results: AOBC ins 31.7 mm Hg, deta .0001) to 123.4 ± observed in two pa was successfully co Conclusion: Transtruptured AAAs. (#### **Case Report** Gynecol Obstet Invest 2009;67:92–95 DOI: 10.1159/000164685 # Elective Use of Aortic Balloon Occlusion in Cesarean Hysterectomy for Placenta Previa Percreta Hitoshi Masamoto^a Hiroyuki Uehara^a Masaki Gibo^b Eiko Okubo^a Kaoru Sakumoto^a Yoichi Aoki^a ^aDepartment of Obstetrics and Gynecology, Faculty of Medicine, University of the Ryukyus, and 2009 ted ry, ter ± ? < ere ock ith ^bDepartment of Radiology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan Transbrachial arterial insertion of aortic occlusion balloon catheter in patients with shock from ruptured abdominal aortic aneurysm Hitoshi Matsuda Ozaki, MD, Ken Kobe, Japan Objective: Of 125 shock from ruptur studied. Methods: With the into the thoracic ac and was advanced was pulled until the Results: AOBC ins 31.7 mm Hg, deta .0001) to 123.4 ± observed in two pawas successfully co Conclusion: Transtruptured AAAs. (Case Report Gynecol Obstet Invest 2009;67:92–95 DOI: 10.1159/000164685 Elective Use of Aortic Balloon Occlusion in Cocasa Buston 2015, 10:1 for Placenta Cocasa Buston 2015, 10:1 http://www.wjes.org/content/10/1/1 2015 ted ry, ter ± Hitoshi Masamoto^a Gynecologic and Obstetric Investigation H RESEARCH ARTICLE **Open Access** ^aDepartment of Obstetrics and (Kaoru Sakumoto^a Yoi ^bDepartment of Radiology, Facu Retrospective study of the effectiveness of Intra-Aortic Balloon Occlusion (IABO) for traumatic haemorrhagic shock Takayuki Irahara¹, Norio Sato^{2*}, Yuuta Moroe³, Reo Fukuda³, Yusuke Iwai³ and Kyoko Unemoto³ # silence Only small case series were published from Japan until 2015.... #### AAST 2014 PLENARY PAPER ? # Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta Nobuyuki Saito, MD, Hisashi Matsumoto, MD, PhD, Takanori Yagi, MD, Yoshiaki Hara, MD, Kazuyuki Hayashida, MD, Tomokazu Motomura, MD, Kazuki Mashiko, MD, Hiroaki Iida, MD, Hiroyuki Yokota, MD, PhD, and Yukiko Wagatsuma, MD, MPH, DrPH, Inzai, Japan *Saito N, et al. J Trauma Acute Care Surg 2015;78:897-904. #### Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta Nobuyuki Saito, MD, Hisashi Matsumoto, MD, PhD, Takanori Yagi, MD, Yoshiaki Hara, MD, Kazuyuki Hayashida, MD, Tomokazu Motomura, MD, Kazuki Mashiko, MD, Hirovaki Iida, MD, Hiroyuki Yokota, MD, PhD, and Yukiko Wagatsuma, MD, MPH, DrPH, Inzai, Japan TABLE 2. A Comparison of the Patients' Characteristics, Clinical Data, and Treatment Between Groups 1 and 2 | Variable | Group 1 $(n = 14)$ | Group $2 (n = 10)$ | p | |------------------------------------|--------------------|--------------------|------| | Age, y | 65 (41–73) | 47 (32–65) | 0.16 | | Male/female | 6/8 | 7/3 | 0.36 | | ISS | 40 (34–50) | 50 (45–54) | 0.06 | | Lower limb ischemia | 2 (14.2) | 0 | 0.21 | | Arterial injury caused by puncture | 1 (7.1) | 0 | 0.38 | | Lower limb amputation | 3 (21.3) | 0 | 0.11 | Group 1 is the 24-hour survivor group (n = 14), and Group 2 is the 24-hour nonsurvivor group (n = 10). The data are presented as median values with an interquartile range or as a n (%). AIS, Abbreviated Injury Scale; TAE, transarterial embolization. | Lower limb ischemia | 2 (14.2) | |------------------------------------|----------| | Arterial injury caused by puncture | 1 (7.1) | | Lower limb amputation | 3 (21.3) | *Saito N, et al. J Trauma Acute Care Surg 2015;78:897-904. #### AAST 2015 PLENARY PAPER Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis Junichi Inoue, MD, Atsushi Shiraishi, MD, PhD, Ayako Yoshiyuki, MD, Koichi Haruta, MD, Hiroki Matsui, MPH, and Yasuhiro Otomo, MD, PhD, Tokyo, Japan *Inoue J, et al. J Trauma Acute Care Surg 2016;80:559-67. Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis Junichi Inoue, MD, Atsushi Shiraishi, MD, PhD, Ayako Yoshiyuki, MD, Koichi Haruta, MD, Hiroki Matsui, MPH, and Yasuhiro Otomo, MD, PhD, Tokyo, Japan | Outcome | With REBOA | Without REBOA | |---|------------------|------------------| | Primary outcome | | | | In-hospital mortality, % | 61.8 (57.9–65.7) | 45.3 (41.3–49.3) | | Secondary outcomes | | _ | | ED mortality, % | 17.1 (14.1–20.1) | 9.7 (7.3–12.1) | | Door-to-blood transfusion time, median, min | 50 (44–57) | 64 (58–71) | | Door-to-primary surgery time, median, min | 97 (90–104) | 110 (102–119) | ^{*}Inoue J, et al. J Trauma Acute Care Surg 2016;80:559-67. Research JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma **Propensity score matching** Research JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma #### AKI Amputation High 24-h mortality | | Patients, No. (%) | | | | |----------------------------------|--------------------------|-----------------------|---------|--| | Variable | No-REBOA Group (n = 280) | REBOA Group (n = 140) | P Value | | | Complications | | | | | | Acute kidney injury | 9 (3.2) | 15 (10.7) | .02 | | | Amputation of lower limb | 2 (0.7) | 5 (3.6) | .04 | | | Deep venous thrombosis | 14 (5.0) | 6 (4.3) | .42 | | | Pulmonary embolism | 5 (1.8) | 2 (1.4) | .28 | | | Stroke | 3 (1.1) | 2 (1.4) | .37 | | | Myocardial infarction | 1 (0.4) | 0 | .51 | | | Extremity compartment syndrome | 2 (0.7) | 1 (0.7) | .39 | | | Overall mortality | 53 (18.9) | 50 (35.7) | .01 | | | Mortality in the ED | 5 (1.8) | 4 (2.9) | .35 | | | 24-h Mortality | 33 (11.8) | 37 (26.4) | .01 | | | In-hospital mortality after 24 h | 15 (5.4) | 9 (6.4) | .21 | | ### Lower limb amputation? Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan Yosuke Matsumura, ¹ Junichi Matsumoto, ² Hiroshi Kondo, ³ Koji Idoguchi, ⁴ Tokiya Ishida, ⁵ Yuri Kon, ⁶ Keisuke Tomita, ⁷ Kenichiro Ishida, ⁸ Tomoya Hirose, ⁹ Kensuke Umakoshi, ¹⁰ Tomohiro Funabiki, ¹¹ DIRECT-IABO Investigators ## Fewer complications in Small sheath | Procedures and complications | Small group (n=53) | Large group (n=25) | Unusual group (n=3) | |-------------------------------------|--------------------|--------------------|---------------------| | Access-related complications, n (%) | | | | | Dissection | 1 (1.9) | 0 (0) | 0 (0) | | Pseudoaneurysm | 0 (0) | 0 (0) | 0 (0) | | Massive haematoma | 1 (1.9) | 0 (0) | 0 (0) | | Retroperitoneal haematoma | 0 (0) | 0 (0) | 0 (0) | | Thromboembolism | 0 (0) | 1 (4.0) | 0 (0) | | Leg ischaemia | 0 (0) | 0 (0) | 2 (67) | | Treatment for complication, n (%) | | | | | Fasciotomy | 0 (0) | 0 (0) | 2 (67) | | Amputation | 0 (0) | 0 (0) | 2 (67) | | PTA | 0 (0) | 1 (4.0) | 0 (0) | ### **Higher mortality?** ### How should we use REBOA? ## **REBOA Algorithms** Basic endovascular skills for trauma course: Bridging the gap between endovascular techniques and the acute care surgeon Megan Brenner, MD, MS, RPVI, Melanie Hoehn, MD, Jason Pasley, DO, Joseph Dubose, MD, Deborah Stein, MD, MPH, and Thomas Scalea, MD, Baltimore, Maryland #### The role of REBOA in the control of exsanguinating torso hemorrhage Walter L. Biffl, MD, Charles J. Fox, MD, and Ernest E. Moore, MD, Denver, Colorado #### Algorithm for Control of Torso Hemorrhage #### ALGORITHM 2 - REBOA Presenter: Kenji Inaba # How many **REBOA Algorithms** do we have to learn? ## **Trauma Strategy > REBOA Algorithms** - 1. RT+REBOA - 2. Early access, Undelayed & Short occlusion - 3. Education & Research # Case # 17M, Fall from 11th story Collapsed 5 mins before arrival CPR initiated OR Angio CT ICU ROSC after 8 minutes of GPR CT ICU FAST exam negative ER OR Angio CT FAST positive@RUQ -> Laparotomy First OR Angio CT ICU ER OR Angio P-REBOA < 20min Angio Liver injury (Grade II) - -bleeding at round lig. - -No other organ injury Retroperitoneal hematoma Expanging Perihepatic Packing& Open abdomen # **Embolization** ER OR Angio CT ICU # ER OR Angio CT ICU # ER OR Angio CT IČU ER OR Angio CT ICU ER OR Angio CT ICU Re-closure of Chest wall ### 1. RT+REBOA - 2. Early access, Undelayed & Short occlusion - 3. Education & Research ER RT + Access → REBOA OR P-REBOA → Deflation < 20min Angio Damage Conctrol IR CT Reassessment: Chest ICU Reclosure # RT # **REBOA** ## Speedy & Definite Less invasive & Adjustable Invasive New chest wound Less speedy CFA puncture Tortuous Aorta Chest wall bleeding Spinal artery injury Hypothermia Pyothorax Leg ischemia Visceral artery injury Balloon migration # RT **REBOA** Speedy & Definite Less invasive & Adjustable Invasive New chest would Less speedy CFA puncture Tortuous Aorta Chest wall bleeding Spinal artery injury Hypothermia Pyothorax Leg ischemia Visceral artery injury Balloon migration Uncertainty in **Tortuous aorta Advanced age** Critical Care ### RESEARCH Open Access CrossMark Resuscitative endovascular balloon occlusion of the aorta versus aortic cross clamping among patients with critical trauma: a nationwide cohort study in Japan Toshikazu Abe^{1,2*}, Masatoshi Uchida¹, Isao Nagata¹, Daizoh Saitoh³ and Nanako Tamiya¹ #### REBOA > RT a Analysis Mortality at discharge 95% CI Unadjusted 0, 220 0, 138 0, 349 (n=840/903) 0. 129 0. 700 Adjusted RTS (n=744/903) Adjusted ISS 0.116 0.303 (n=840/903) Adjusted TRISS 0.502 0 309 0 190 (n=830/903) After propensity score matching* 0, 130 0, 523 (n=280/304) 0.01 0.1 Odds Ratio b Analysis Mortality at ED 95% CI Unad justed (n=889/903) Adjusted RTS 0.408 (n=783/903) 0,382 Adjusted ISS 0, 205 (n=889/903) Adjusted TRISS 0, 256 0.484 (n=878/903) After propensity score matching* 0.182 0.106 0.313 (n=299/304) 0.01 0.1 10 Odds Ratio # **Diagnosis Procedure Combination Database** ORIGINAL ARTICLE Resuscitative endovascular balloon occlusion of the aorta or resuscitative thoracotomy with aortic clamping for noncompressible torso hemorrhage: A retrospective nationwide study ### N.S. in ICU-free days (χ^2 test, p=0.1935) (Table 2). In the propensity score—adjusted Cox regression analysis, there was no significant difference between the REBOA and RT groups with respect to in-hospital mortality (hazard ratio, 0.94; 95% confidence interval [CI], 0.60–1.48; p=0.7917). In the propensity Abe T et al. Crit Care 2016;20:400 Aso S et al. J Trauma Acute Care Surg 2017;82:910 ORIGINAL SCIENTIFIC ARTICLES Resuscitative Endovascular Balloon Occlusion of the Aorta and Resuscitative Thoracotomy in Select Patients with Hemorrhagic Shock: Early Results from the American Association for the Surgery of Trauma's Aortic Occlusion in Resuscitation for Trauma and Acute Care Surgery Registry No CPR SBP <90mmHg ### REBOA > RT ## [9.1% (26/285)] [RT = 65.4% (17/26); REBOA = 34.6% (9/26)] ### Survival beyond ED $$RT = 47.1\% (8/17)$$ REBOA = $$100\% (9/9)$$ $$p = 0.009$$ ### Survival to discharge $$RT = 0\% (0/17)$$ $$REBOA = 44.4\% (4/9)$$ $$p = 0.008$$ RT vs. REBOA? Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators ### RT+REBOA! An evidence-based approach to patient selection for emergency department thoracotomy: A practice management guideline from the Eastern Association for the Surgery of Trauma In patients who present pulseless to the Emergency Department with signs of life after blunt injury, we conditionally recommend resuscitative Emergency Department thoracotomy. Conditional Recommendation In patients who present pulseless to the Emergency Department without signs of life after blunt injury, we conditionally recommend against resuscitative Emergency Department thoracotomy. Conditional Recommendation # RT is not strongly recommended in pulseless blunt trauma *Seamon MJ et al. J Trauma Acute Care Surg. 2015;79:159-73. ### **Aug 2011-Dec 2015, 18 Hospitals** Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators Non-traumatic hemorrhage is controlled with REBOA in acute phase then mortality increases gradually by non-hemorrhagic causes: DIRECT-IABO registry in Japan Y. Matsumura^{1,7} · J. Matsumoto² · K. Idoguchi³ · H. Kondo⁴ · T. Ishida⁵ · Y. Kon⁶ · K. Tomita⁷ · K. Ishida⁸ · T. Hirose⁹ · K. Umakoshi¹⁰ · T. Funabiki¹¹ · DIRECT-IABO investigators ### **Aug 2011-Dec 2015, 18 Hospitals** Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators Non-traumatic hemorrhage is controlled with REBOA in acute phase then mortality increases gradually by non-hemorrhagic causes: DIRECT-IABO registry in Japan Y. Matsumura^{1,7} J. Matsumoto² · K. Idoguchi³ · H. Kondo⁴ · T. Ishida⁵ · Y. Kon⁶ K. Tomita⁷ · K. Ishida⁸ · T. Hirose⁹ · K. Umakoshi¹⁰ · T. Funabiki¹¹ · DIRECT-IABO investigators # RT+REBOA population ### Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators | | 24-h nonsurvivors $(n = 24)$ | 24-h survivors $(n=6)$ | P | |------------------|------------------------------|------------------------|------| | CPR before REBOA | 16 (67) | 6 (100) | 0.16 | | At field | 12 (50) | 5 (83) | | | On arrival | 8 (33) | 3 (50) | | | Preocclusion | 11 (46) | 3 (50) | | RT+REBOA may give a chance even in pulseless blunt trauma Conversion prevents **hypothermia**Closing chest prevents **chest wall** bleeding *Matsumura Y, et al. Eur J Emerg Med 2018;25:348-354. - 1. RT+REBOA - 2. Early access, Undelayed & Short occlusion - 3. Education & Research ER RT + Access → REBOA OR P-REBOA → Deflation <20min Angio Damage Control IR CT Reassessment: Chest ICU Reclosure Portable **Bilateral arterial access** 4Fr 7Fr Large venous access **MTP** initiated # "TOP STENT" # Chapter 1 # It is all about the vascular access Yosouke Matsumura, Junichi Matsumoto, Lauri Handolin, Lars Lönn, Jonny Morrison, Joe DuBose and Tal Hörer As a modification of the traditional "ABCDE" mnemonic advocated in the ATLS protocol approach to initial trauma evaluation and treatment, an EVTM enabled provider might consider using an "<u>AABCDE</u>" (airway and simultaneous vascular access, breathing, circulation etc.). Why might the use of the AABCDE-centered thought process prove useful? Very simply: this # **Arterial access** # **Advantage** # **Disadvantage** Upsize to REBOA Early IR Vascular injury A-line Blood sampling Hematoma ## Delayed access can lead a catastrophe ...Less palpable ... Cardiac arrest ...Hematoma ### ORIGINAL ARTICLE Early arterial access for resuscitative endovascular balloon occlusion of the aorta is related to survival outcome in trauma Yosuke Matsumura, MD, PhD, Junichi Matsumoto, MD, PhD, Hiroshi Kondo, MD, PhD, Koji Idoguchi, MD, Tokiya Ishida, MD, Yohei Okada, MD, Yuri Kon, MD, Kazuyuki Oka, MD, Kenichiro Ishida, MD, Yukitoshi Toyoda, MD, Tomohiro Funabiki, MD, PhD, and DIRECT-IABO Investigators, Chiba, Japan *Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511. ### From Aug 2011-Dec 2016, 23 Hospitals | Characteristics | Nonsurvivors
(n = 49) | Survivors
(n = 60) | p | |---------------------------------------|--------------------------|-----------------------|---------| | ISS | 43 (34–50) | 33 (21–42) | < 0.001 | | Head AIS score | 3 (0–5) | 0 (0-3) | 0.11 | | Chest AIS score | 4 (2–4) | 3 (0-4) | 0.14 | | Abdomen AIS score | 2 (0-3) | 3 (0-4) | 0.10 | | Extremities or pelvis AIS score | 4 (2–5) | 3 (0-4) | 0.039 | | CPR, n (%) | | | | | Prehospital | 5 (10.2) | 1 (1.7) | 0.088 | | Arrival | 6 (12.2) | 1 (1.7) | 0.045 | | Occlusion | 6 (12.2) | 3 (5.1) | 0.29 | | Vital signs on arrival | | | | | RR, /min | 24 (13–30) | 24 (16–30) | 0.95 | | HR. /min | 100 (80–128) | 105 (90-126) | 0.75 | | SBP, mm Hg | 74 (48–100) | 90 (72–115) | 0.20 | | Preocclusion SBP,
mm Hg (n = 108) | 58 (40–80) | 76 (61–90) | 0.018 | | Postocclusion SBP,
mm Hg (n = 108) | 102 (83–124) | 116 (102–137) | 0.023 | | P-REBOA, $n (\%) (n = 89)$ | 21 (55.3) | 40 (78.4) | 0.023 | | Duration of aortic occlusion, min | 999AT | | | | Total duration of occlusion | 63 (40–99) | 35 (20–70) | 0.014 | | (n - 89) | | | | | Duration of P-REBOA $(n = 89)$ | 5.5 (0–74) | 20 (1.5–47) | 0.30 | | Characteristics | Nonsurvivors
(n = 49) | Survivors
(n = 60) | p | |---|--------------------------|-----------------------|-------| | Injury to arrival, min (n = 108) | 35 (29–50) | 45 (32–54) | 0.019 | | Arrival to access, min (n = 95) | 47 (23–83) | 25 (10-57) | 0.052 | | Arrival to inflation,
min (n = 106) | 61 (28–97) | 58 (30–101) | 1.00 | | Arrival to definitive hemostasis,
min (n = 97) | 88 (56–113) | 78 (55–121) | 0.77 | ^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511. | | OR | 95% CI | p | |------------------------|-------|---------------|--------| | Arrival to access, min | 0.989 | 0.979-0.999 | 0.034 | | ISS | 0.944 | 0.907 - 0.982 | 0.0039 | Binary logistic regression analysis was conducted with 30-day survival as the dependent variable and preocclusion SBP, total duration of occlusion, arrival to access, arrival to definitive hemostasis, and ISS as the independent variables. ^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511. ### $0.989^{10} = 90\%$ ^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511. AUC 0.654 Sensitivity 79.5% Specificity 47.1% Cutoff 21.5 min ^{*}Matsumura Y, et al. J Trauma Acute Care Surg 2018;85:507-511. # Benefit of Early Access in REBOA patients - 1. RT+REBOA - 2. Early access, Undelayed & Short occlusion - Education & Research ER RT + Access → REBOA OR P-REBOA → Deflation < 20min Angio DCIR CT Reassessment: Chest&Liver ICU Reclosure & VPC Partial occlusion, conversion from thoracotomy, undelayed but shorter occlusion: resuscitative endovascular balloon occlusion of the aorta strategy in Japan Yosuke Matsumura^{a,b}, Junichi Matsumoto^c, Hiroshi Kondo^d, Koji Idoguchi^e and Tomohiro Funabiki^f;DIRECT-IABO investigators # REBOA patient: ## Who survived? Who benefit? | Characteristics before | nonsurvivors | 24-h survivors | | |-----------------------------|------------------|----------------|---------| | during occlusion | (n=30) | (n = 46) | P | | Characteristics before and | during occlusion | | | | Age (years) | 68 (41-77) | 58 (43-65) | 0.10 | | Male | 16 (53) | 35 (76) | 0.048 | | Preocclusion status | | | | | Injury severity score | 37 (34-51) | 34 (22-48) | 0.037 | | Head AIS | 0 (0-5.0) | 2.5 (0-4.0) | 0.96 | | Chest AIS | 3.0 (3.0-4.0) | 3.0 (0-4.0) | 0.13 | | Abdominal AIS | 2.0 (0-3.0) | 3.0 (0-4.0) | 0.071 | | Extremity or pelvis AIS | 4.0 (2.0-5.0) | 3.0 (0-4.0) | 0.054 | | Arrival to occlusion (min) | 60 (28–92) | 60 (26-83) | 0.73 | | CPR before REBOA | 7 (23) | 4 (8.7) | 0.10 | | Preocclusion SBP (mmHg) | 43 (40-80) | 72 (55–91) | 0.002 | | Postocclusion SBP (mmHg) | 100 (90–120) | 120 (100-145) | 0.007 | | Hemodynamics after RE | BOA | | | | Improvement in hemodynamics | 25 (83) | 42 (91) | 0.31 | | Achievement of stability | 18 (60) | 44 (96) | < 0.001 | | Characteristics before | and 24-h
nonsurvivors | 24-h survivors | | |-------------------------------|--------------------------|-----------------------------|-------| | during occlusion | (n=30) | (n = 46) | P | | Management during occlus | ion | | | | Partial occlusion | 14 (54) | 26 (70) | 0.20 | | Duration of aortic occlus | ion (min) | and the second articles are | | | Total duration of occlusion | 60 (40–99) | 31 (11–70) | 0.010 | | Duration of partial occlusion | 5 (0-35) | 11 (0-44) | 0.47 | # Undelayed (SBP 70mmHg) Shorter (30 min) occlusion | | | C* | | |---------------|--------------------------|-------------------------|------------------------| | Patient | Advanced | Middle-
advanced | Young | | Mechanism | Blunt >>>
Penetrating | Blunt >>
Penetrating | Blunt >
Penetrating | | Trauma team | Multi-
disciplinary | Multi-
disciplinary | Surgeon-
centered | | Resuscitation | EM | EM | Surgeon, EM | #### GUIDELINES FOR REBOA USE AND IMPLEMENTATION - ▶ REBOA protocols should be developed in conjunction with vascular surgery. - REBOA should be performed by an acute care surgeon or an interventionalist (vascular surgeon or interventional radiologist) trained in REBOA. - An acute care surgeon must be immediately available to definitively address the specific cause of hemorrhage to avert the dire complications of truncal and or spinal cord ischemia from prolonged aortic occlusion.¹⁰⁻¹² - ► Emergency medicine (EM) physicians with added certification in critical care (EMCC) trained in REBOA, may train and perform REBOA in conjunction with an acute care surgeon or vascular surgeon trained in REBOA, as long as the surgeon(s) is/are immediately available to definitively control the focused source of bleeding. Joint statement from the American College of Surgeons Committee on Trauma (ACS COT) and the American College of Emergency Physicians (ACEP) regarding the clinical use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) *Brenner M, et al. Trauma Surgery & Acute Care Open2018;3:e000154. #### **EM performs REBOA** | Operator specialty, n (%) | | |---------------------------|---------| | EM familiar with access | 62 (44) | | EM-IR | 71 (50) | | IR | 6 (4.2) | | Others | 3 (2.1) | Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan Yosuke Matsumura, ¹ Junichi Matsumoto, ² Hiroshi Kondo, ³ Koji Idoguchi, ⁴ Tokiya Ishida, ⁵ Yuri Kon, ⁶ Keisuke Tomita, ⁷ Kenichiro Ishida, ⁸ Tomoya Hirose, ⁹ Kensuke Umakoshi, ¹⁰ Tomohiro Funabiki, ¹¹ DIRECT-IABO Investigators #### **EM performs REBOA** | Operator specialty, n (%) | | |---------------------------------|---------| | EM familiar with access | 62 (44) | | EM-IR | 71 (50) | | First Responde should perform R | h (4 /) | | Others Silouid Perioriii K | 3 (2.1) | Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan Yosuke Matsumura, ¹ Junichi Matsumoto, ² Hiroshi Kondo, ³ Koji Idoguchi, ⁴ Tokiya Ishida, ⁵ Yuri Kon, ⁶ Keisuke Tomita, ⁷ Kenichiro Ishida, ⁸ Tomoya Hirose, ⁹ Kensuke Umakoshi, ¹⁰ Tomohiro Funabiki, ¹¹ DIRECT-IABO Investigators #### **EM performs REBOA** *Matsumura Y, et al. Emerg Med J 2017;34:793 #### See Bifurcation with US **Review Article** Echocardiographic guidance for diagnostic and therapeutic percutaneous procedures *Nguyen CT, et al. Cardiovasc Diagn Ther 2011;1:11-36. #### See Guidewire in Aorta *Ogura T, et al. J Emerg Med 2017;52:715-22 | | | C* | | |---------------|---------------------------------------|-----------------------------------|------------------------| | Patient | Advanced | Middle-
advanced | Young | | Mechanism | Blunt >>> Penetrating | Blunt >> Penetrating | Blunt >
Penetrating | | Trauma team | Multi-
disciplinary | Multi-
disciplinary | Surgeon-
centered | | Resuscitation | EM | EM | Surgeon, EM | ### Geriatric Blunt **Coagulopathy Tortuous aorta** - 1. RT+REBOA - 2. Early access, Undelayed & Short occlusion - 3. Education & Research # Endovascular workshop 2011 - 2013 - 2014 - 2016 - 2018 - EM, IR, Surgeon Surgeon Surgeon EM, Paramed Surgeon #### Creating an Educational Program in the **Endovascular and Hybrid Intervention; Experiences from the Japanese Society** of Diagnostic and Interventional Radiology in Emergency, Critical Care, and Trauma (DIRECT) Tomohiro Funabiki MD PhD1, Yosuke Matsumura MD PhD2, Hiroshi Kondo MD PhD3, Koji Idoguchi MD4, Junichi Matsumoto MD PhD5; Japanese Society of Diagnostic and Interventional Radiology in Emergency, Critical Care, and Trauma (DIRECT) Emergency and Critical Care Center, Saiseikai Yokohamashi Tobu Hospital, Japan ² Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Japan Department of Radiology, Telkyo University School of Medicine, Japan Osaka Prefecture Senshu Trauma and Critical Care Medical Center, Rinku General Medical Center, Japan Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Japan # **REBOA & catheter technique** Virtual fluoroscopy 3D vessel model Over-the-wire technique # "Hybrid" simulation #### **REBOA** Selective **balloon** catheter **NBCA** embolization Combined with surgery #### Advanced Surgical Skills for Exposure in Trauma Course Jointed with Japanese Society of DIRECT Vascular Access and Placement of REBOA Catheter; -vascular anatomy & safe procedure 2011 - 2013 - 2014 - 2016 - 2018 - EM, IR, Surgeon Surgeon Surgeon EM, Paramed Surgeon 2011 - 2013 - 2014 - 2016 - 2018 - EM, IR, Surgeon Surgeon Surgeon EM, Paramed Surgeon #### アウジウ ウズレ # **Endovascular Resuscitation** and Trauma Management 2011 - 2013 - 2014 - 2016 - 2018 - EM, IR, Surgeon Surgeon Surgeon EM, **Paramed** Surgeon 2011 - 2013 - 2014 - 2016 - 2018 EM, IR, Surgeon Surgeon Surgeon EM, Paramed Surgeon The 1st Endovascular Training for REBOA Hands-on Course - RT+REBOA - 2. Early access, Undelayed & Short occlusion - 3. Education & Research #### AAST 2015 PLENARY PAPER #### Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: A propensity score analysis Junichi Inoue, MD, Atsushi Shiraishi, MD, PhD, Ayako Yoshiyuki, MD, Koichi Haruta, MD, Hiroki Matsui, MPH, and Yasuhiro Otomo, MD, PhD, Tokyo, Japan JAMA Surgery | Original Investigation ### Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma ### AKI Amputation High 24-h mortality | | Patients, No. (%) | | | |----------------------------------|--------------------------|-----------------------|---------| | Variable | No-REBOA Group (n = 280) | REBOA Group (n = 140) | P Value | | Complications | | | | | Acute kidney injury | 9 (3.2) | 15 (10.7) | .02 | | Amputation of lower limb | 2 (0.7) | 5 (3.6) | .04 | | Deep venous thrombosis | 14 (5.0) | 6 (4.3) | .42 | | Pulmonary embolism | 5 (1.8) | 2 (1.4) | .28 | | Stroke | 3 (1.1) | 2 (1.4) | .37 | | Myocardial infarction | 1 (0.4) | 0 | .51 | | Extremity compartment syndrome | 2 (0.7) | 1 (0.7) | .39 | | Overall mortality | 53 (18.9) | 50 (35.7) | .01 | | Mortality in the ED | 5 (1.8) | 4 (2.9) | .35 | | 24-h Mortality | 33 (11.8) | 37 (26.4) | .01 | | In-hospital mortality after 24 h | 15 (5.4) | 9 (6.4) | .21 | JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma #### **Comments & Response** Complete manuscript title: Minimizing the bias in the observational study in the REBOA patients Authors: Yosuke Matsumura, MD, PhD¹, Atsushi Shiraishi, MD, PhD² JAMA Surgery | Original Investigation #### Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma #### SBP 109 mmHg GCS 14 | | Patients, No. (%) | | | |---------------------------|------------------------------|-----------------------|---------| | Variables | No-REBOA Group (n = 593 678) | REBOA Group (n = 140) | P Value | | Age, mean (SD), y | 53 (21) | 44 (20) | <.001 | | Male sex | 379 954 (64.0) | 104 (74.3) | .01 | | White race | 436 353 (73.5) | 89 (63.6) | .003 | | Vital signs in ED | | | | | SBP, mean (SD), mm Hg | 138.0 (27.0) | 108.8 (32.7) | <.001 | | HR, mean (SD), bpm | 88.8 (20.0) | 102.0 (30.0) | <.001 | | GCS score, median (IQR) | 15 (15-15) | 14 (3-15) | <.001 | | Injury parameters | | | | | Blunt MOI | 565 181 (95.2) | 129 (92.1) | .11 | | ISS, median (IQR) | 15 (9-17) | 29 (18-38) | <.001 | | h-AIS score, median (IQR) | 0 (0-2) | 0 (0-3) | <.001 | | | | | 201 | Joseph B et al. JAMA surg 2019 JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma #### SBP 114 mmHg GCS 15 vs. 3 Head AIS 0 vs.2 | | Patients, No. (%) | | | |-------------------------|-------------------|---------------|---------| | Variable | Survived (n = 90) | Died (n = 50) | P Value | | Age, mean (SD), y | 42 (19) | 48.2 (19) | .12 | | Male sex | 57 (63.3) | 32 (64.0) | .20 | | Vital signs in the ED | | | | | SBP, mean (SD), mm Hg | 114 (32) | 98 (31) | .006 | | HR, mean (SD), bpm | 99.0 (27.0) | 109.4 (25.0) | .02 | | GCS score, median (IQR) | 15 (13-15) | 3 (3-13) | .04 | | Injury parameters | | | | | Blunt MOI | 82 (91.1) | 47 (94.0) | .54 | | ISS, median (IQR) | 27 (17-34) | 38 (26-50) | .043 | | h-AIS, median (IQR) | 0 (0-2) | 2 (0-4) | .002 | Joseph B et al. JAMA surg 2019 JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma # 1 unit of Transfusion24h | | Patients, No. (%) | | | |---|-------------------|---------------|---------| | Variable | Survived (n = 90) | Died (n = 50) | P Value | | Transfusion requirements, median (IQR), U | | | | | PRBCs | | | | | 4 h | 0 (0-5) | 12 (7-19) | <.001 | | 24 h | 1 (1-6) | 14 (9-22) | <.001 | | Platelets | | | | | 4 h | 0 (0-1) | 2 (1-3) | <.001 | | 24 h | 1 (0-2) | 3 (2-6) | <.001 | | Plasma | | | | | 4 h | 0 (0-3) | 9 (4-15) | <.001 | | 24 h | 1 (1-5) | 13 (6-20) | <.001 | Joseph B et al. JAMA surg 2019 JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma First, the patients were too stable to require REBOA, This suggests unnecessary REBOA placement in a stable population, leading to unnecessary amputation and AKI. JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma Physiological derangement in REBOA cases might increase the apparent mortality rate, while the resuscitation time bias might decrease the apparent mortality in the REBOA group JAMA Surgery | Original Investigation Nationwide Analysis of Resuscitative Endovascular Balloon Occlusion of the Aorta in Civilian Trauma Ideally, time-dependent propensity-score-matching analysis should be performed, with use of sensitivity analysis, e.g., instrumental variable analysis, to adjust for unmeasured confounders. Prospective observational study on the effectiveness and safety of resuscitative endovascular balloon occlusion of the aorta in traumatic shock due to torso hemorrhage PI: Yosuke Matsumura The Japanese Association for The Surgery of Trauma ## Conclusion - 1. RT+REBOA Chance in Blunt Cardiac Arrest - 2. Early access, Undelayed & Short occlusion Access < 20min, SBP70mmHg, < 30min - 3. Education & Research Endo. workshop & International Multicenter study # Let's Proceed Education & Research together! yousuke.jpn4035@gmail.com # Let's Proceed Education & Research together! ## İlginiz için teşekkür ederim! yousuke.jpn4035@gmail.com