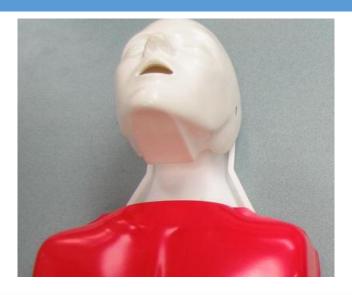
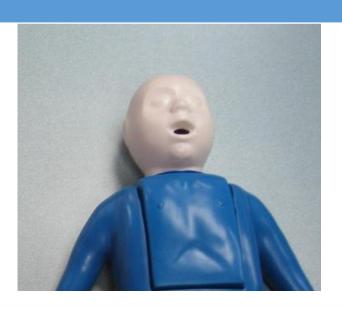

Pediatric CPR

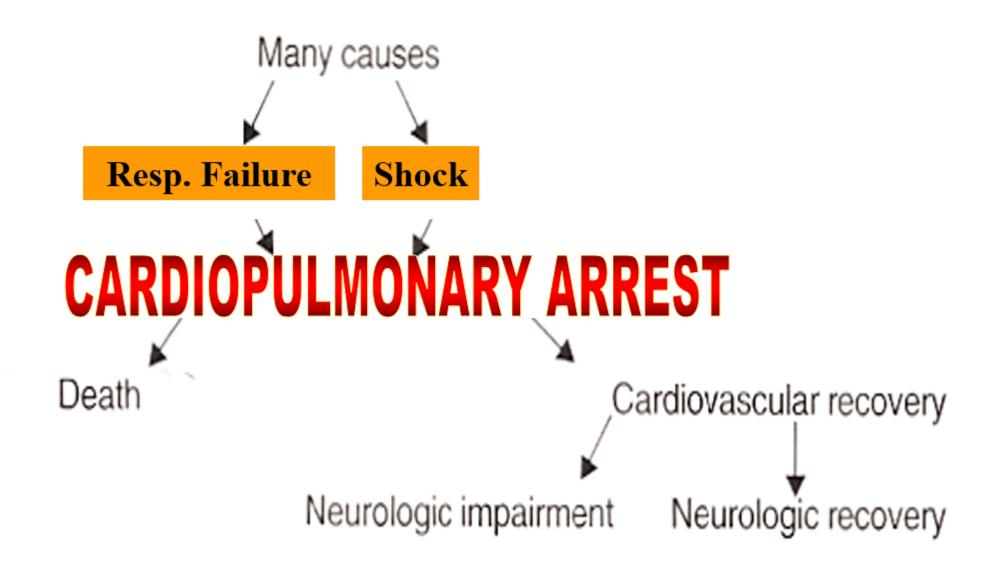
Mustafa SERİNKEN MD Professor of Emergency Medicine, Pamukkale University, TURKEY


What are the differences?

Normal limits


	Infant(< 1 yr)	1-3 yr	4-5 yr	6-8 yr	Adult
Respiratory Rate /min	30-60	24-40	22-34	18-30	12-20
Pulse Rate /min	100-160	90-150	80-140	70-120	60-100
Systolic BP (lower L)	60>	70>	75>	80>	90>

ADULT



İschemic cardiovascular disease

INFANTS AND CHILDREN

Respiratory failure and/or shock

Cardiogenic pulmonary edema

Atelectasis

Pneumonia

Hypoxic Respiratory

Trauma

Post surgery

changes

pulmonary ARDS

Failure

Pulmonary fibrosis

extra pulmonary ARDS

Infiltrates in immunsuppression

Aspiration

Common causes of cardiac arrest in children

- ➤ Bronchospasm / Respiratory infection
- **≻**Burns
- ➤ Drowning
- **≻**Dysrhythmias
- ➤ Foreign Body Aspiration
- ➤ Gastroenteritis (vomiting and diarrhea)
- **≻**Sepsis
- **≻**Seizures
- >Trauma

Successful resuscitation

Receive early CPR

Initial cardiac arrest rhythm of VF-pVT

successful resuscitation

-early recognition of cardiopulmonary arrest

-prompt initiation

Pediatric Assessment Triangle (PAT)

 The triangle is designed to be a quick and simple approach to evaluating a child based on visual and auditory clues.

- Tone
- Interactivity
- Consolability
- Look/gaze
- Speech/cry

- · Abnormal breath sounds
- · Abnormal positioning
- Retractions
- Flaring

CIRCULATION

- Pallor
- Mottling
- Cyanosis
- Bleeding

Pediatric Advanced Life Support

Identification of Respiratory Problems by Severity

	Respiratory Distress Respiratory Failure					
A	Open and maintainable Not maintainable					
В	Tachypnea					
	Work of breathing (nasal flaring/retractions) Increased effort Decreased effort Apnea					
	Good air movement Poor to absent air movement					
	Tachycardia Bradycardia					
С	Pallor Cyanosis					
D	Anxiety, agitation Lethargy to unresponsiveness					
E	Variable temperature					

Out-of-hospital

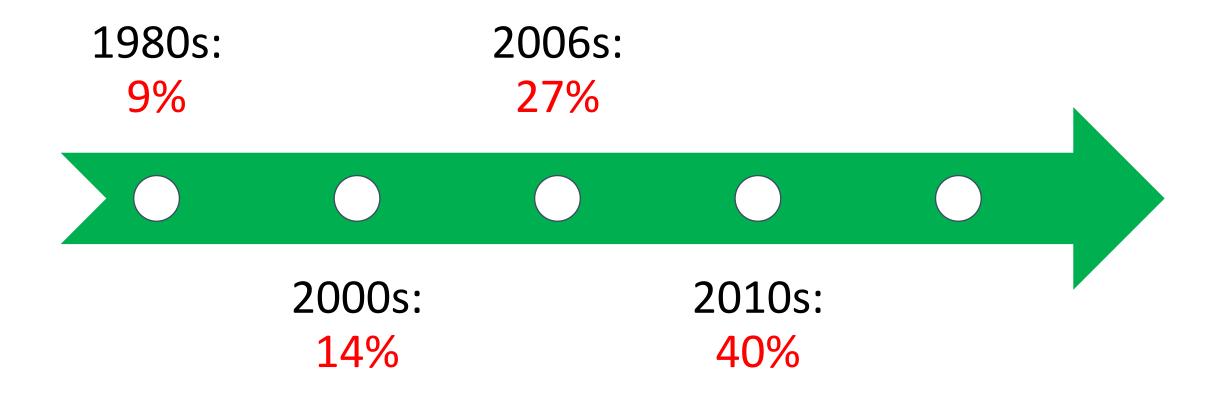
- >pediatric prehospital medical arrest
- > examined cohort of 147 children
- **>**boys 58%
- >69% arrests occurred at home
- >4% survived to hospital discharge

•

Foltin GL, et al. <u>Pediatric prehospital evaluation of NYC cardiac arrest survival (PHENYCS)</u>. Pediatr Emerg Care. 2012 Sep;28(9):864-8.

Out-of-hospital (trauma)

- > pediatric traumatic arrest
- > examined cohort of 118 children
- ➤ age 13<
- >5% survived


Brindis SL, et al. <u>Universally poor outcomes of pediatric traumatic arrest: a prospective case series and review of the literature</u>. Pediatr Emerg Care. 2011 Jul; 27(7):616-21.

İn-hospital

- ➤ In one multicenter observational study
- >academic pediatric hospitals
- ≥1031 children....in-hospital cardiopulmonary arrests
- > over a 10 year period (2000 to 2009)
- >discharge increased from 14 to 43 %
- > the rates of significant neurologic disability remained stable

Girotra S, Spertus JA, Li Y, et al. Survival trends in pediatric in-hospital cardiac arrests: an analysis from Get With the Guidelines-Resuscitation. Circ Cardiovasc Qual Outcomes 2013; 6:42.

in-hospitalsurvival rates

What did change in the hospital?

- 1. Earlier recognition of clinical deterioration
- 2. More aggressive implementation of resuscitation guidelines
- Rapid response teams (RRT) effect
 Cardiopulmonary arrest rates < 72%
 Mortality rates < 35%

What is rapid response teams (RRT)?

>A team designed for early intervention for potentially

unstable patients

>A proactive approach to patient care

> Who are the members?

□ Nurses

□ Paramedic

■Physicians

Respiratory arrest vs Cardiopulmonary arrest

- ➤ observational study of 95 children
- ➤out-of-hospital arrest
- >82 % of children with respiratory arrest were alive at one year
- ► 14%cardiopulmonary arrest
- >If no cardiopulmonary arrest.... results are better

Herce J, García C, Domínguez P, et al. Outcome of out-of-hospital cardiorespiratory arrest in children. Pediatr Emerg Care 2005; 21:807.

CAB instead of ABC

Compressions prior to airway and breathing for infants and children in cardiac arrest

Part 13: Pediatric Basic Life Support

2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Marc D. Berg, Chair; Stephen M. Schexnayder; Leon Chameides; Mark Terry; Aaron Donoghue; Robert W. Hickey; Robert A. Berg; Robert M. Sutton; Mary Fran Hazinski

Key points 2010 Guidelines

- Compressions should be started immediately while second rescuer prepares to start ventilations
- ➤If the child is not intubated30 compressions /2 ventilations15 compressions/2 ventilations
- ➤ New evidence documents the important role of <u>ventilations</u> in CPR for infants and children
- ➤ For unwilling rescuers...Hand only CPR

Part 10: Pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.

Kleinman ME, de Caen AR, Chameides L, Atkins DL, Berg RA, Berg MD, Bhanji F, Biarent D, Bingham R, Coovadia AH, Hazinski MF, Hickey RW, Nadkarni VM, Reis AG, Rodriguez-Nunez A, Tibballs J, Zaritsky AL, Zideman D; Pediatric Basic and Advanced Life Support Chapter Collaborators **Circulation**. 2010 Oct 19;122(16 Suppl 2):S466-515. doi: 10.1161/CIRCULATIONAHA.110.971093. No abstract

Effective chest compressions

- ➤ At least 1/3 the anterior-posterior dimension of the chest
- >4 cm in most infants
- > 5 cm in most children
- ➤ Heart rate > 100 /min

Part 10: Pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.

Kleinman ME, de Caen AR, Chameides L, Atkins DL, Berg RA, Berg MD, Bhanji F, Biarent D, Bingham R, Coovadia AH, Hazinski MF, Hickey RW, Nadkarni VM, Reis AG, Rodriguez-Nunez A, Tibballs J, Zaritsky AL, Zideman D; Pediatric Basic and Advanced Life Support Chapter Collaborators **Circulation**. 2010 Oct 19;122(16 Suppl 2):S466-515. doi: 10.1161/CIRCULATIONAHA.110.971093. No abstract

Palpation of pulse

- If there is no pulse or it is not definitively identified within 10 seconds, then start compressions BEFORE performing airway or breathing maneuvers
- ➤ Not reliable as the sole determinant of cardiac arrest
- ➤If the victim is unresponsive, not breathing normally and without signs of life.

 CPR should be started
- ➤ Healthcare providers accurately determine the presence or absence of a pulse in infants and children about 80%

intubating

- ➤ Both uncuffed and cuffed endotracheal tubes are acceptable for intubating infants and children
- Formula for uncuffed tubes: Age (year)/4+4
- > Formula for cuffed tubes

Infants < 12 month 3.0 cuffed

Infants 12 -24 month 3.5 cuffed

Children 24 > month Age (year)/4 + 3,5

- ➤ Attention to inflation pressure for cuffed tubes
- ➤ Avoid excessive pressure!

Respiratory support

➤Intubated infants and children should be ventilated at a rate of 8 to 10 breaths per minute without any interruption of chest compressions

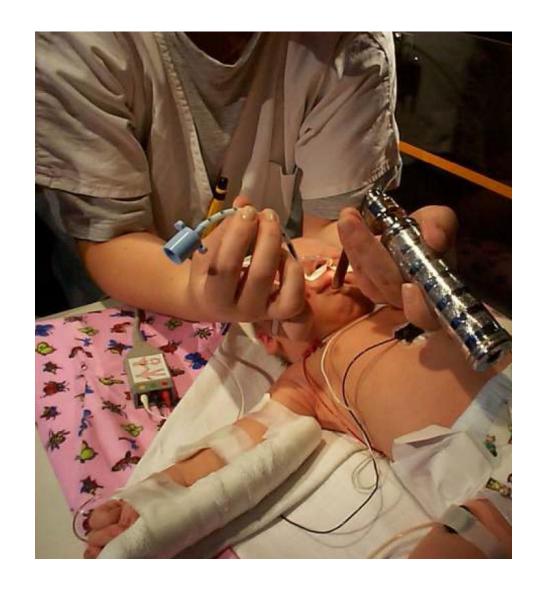
Defibrilation

- ➤If initial cardiac arrest rhythm of VF or pVTIncreased survival rates
- ➤ For VF or pVT.....initial energy dose 2-4 J/kg
- ➤ If a manual defibrillator is not available, an automated defibrillator (AED) should be used as soon as possible for all infants and children with a witnessed arrest.

Differences related with age

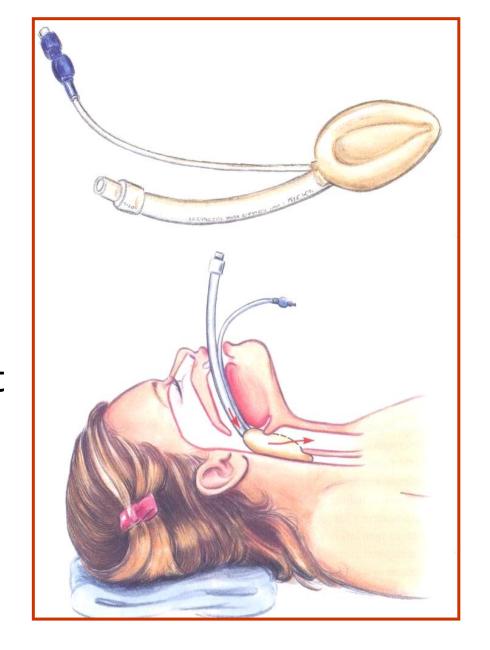
- > Endotracheal tube diameters
- ➤ Medication doses
- ➤ Tidal volume
- > Cardiac compression style (one hand, two hand, two fingers)
- ➤ Respiration rates

Broselow Pediatric Emergency Tape


	Color	Estimated Weight	Estimated Weight	
		(in kilograms)	(in pounds)	
	Grey	3-5 kg	6-11 lbs	
	Pink	6-7 kg	13-15 lbs	
	Red	8-9 kg	17-20 lbs	
	Purple	10-11 kg	22-24 lbs	
	Yellow	12-14 kg	26-30 lbs	
	White	15-18 kg	33-40 lbs	
	Blue	19-23 kg	42-50 lbs	
	Orange	24-29 kg	53-64 lbs	
	Green	30-36 kg	66-80 lbs	

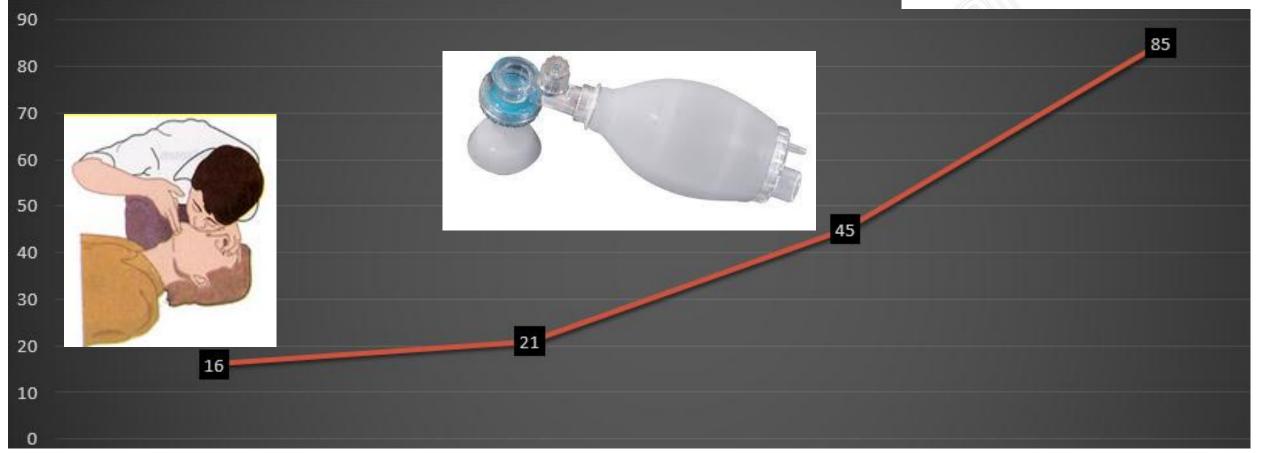
 Pre-prepared packages set you free to account for dosages and other things

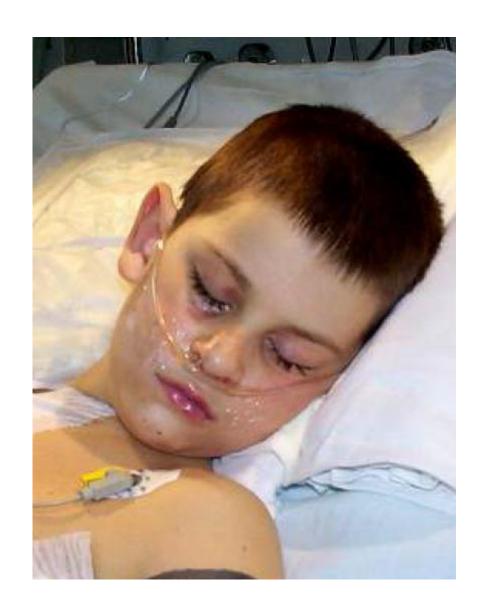
Blade


 Under 4 years of age, miller blades should be used.

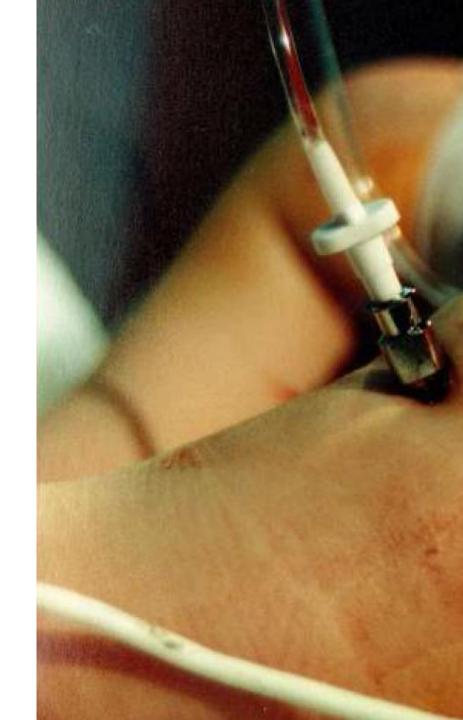
Laryngeal Mask

- Higher success rate
- Does NOT protect from aspiration
- Difficult to maintain during transport


Appropriate material



Oxygen concentration %



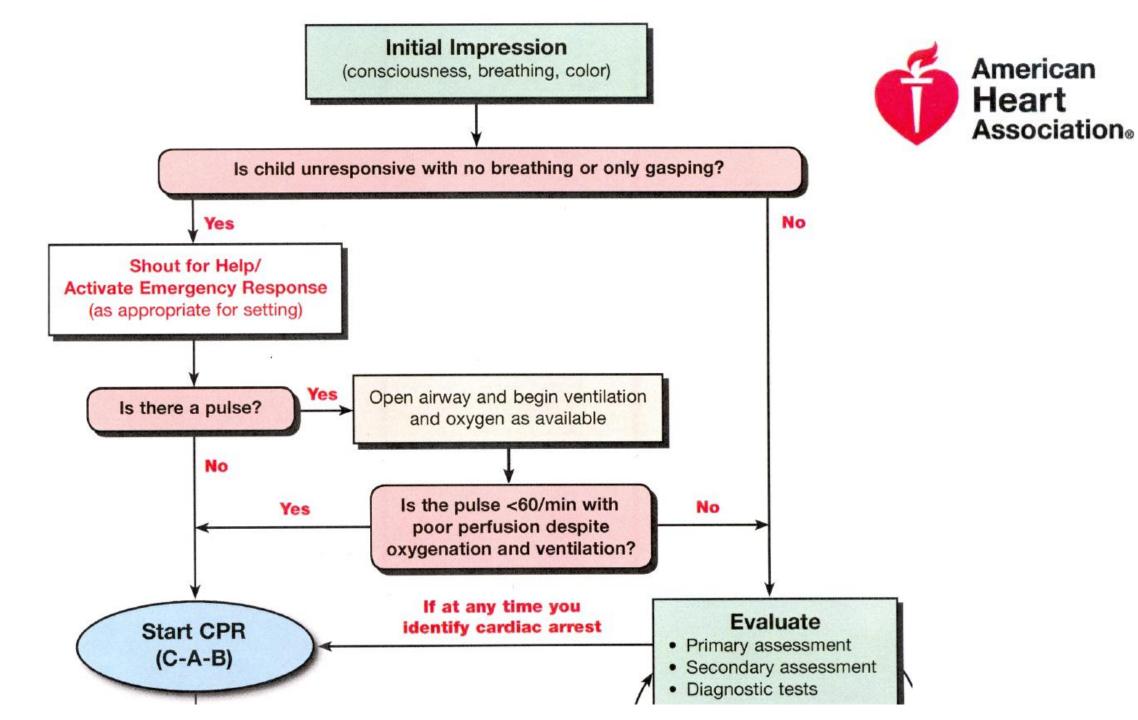
Intraosseous line (IO)

- > a rapid and safe alternative
- when peripheral venous access is difficult.
- ➤ If a peripheral IV cannot be quickly
- > should be placed by a trained provider!

EZ-IO

- ➤ Study period (January 2009-December 2011)
- ≥348 patients
- ➤ Overall success rate was 99.6%
- First attempt success rate of 85.9%
- Time: 10 seconds or less

Resuscitation. 2015 Mar;88:43-7. doi: 10.1016/j.resuscitation.2014.12.015. Epub 2014 Dec 30.



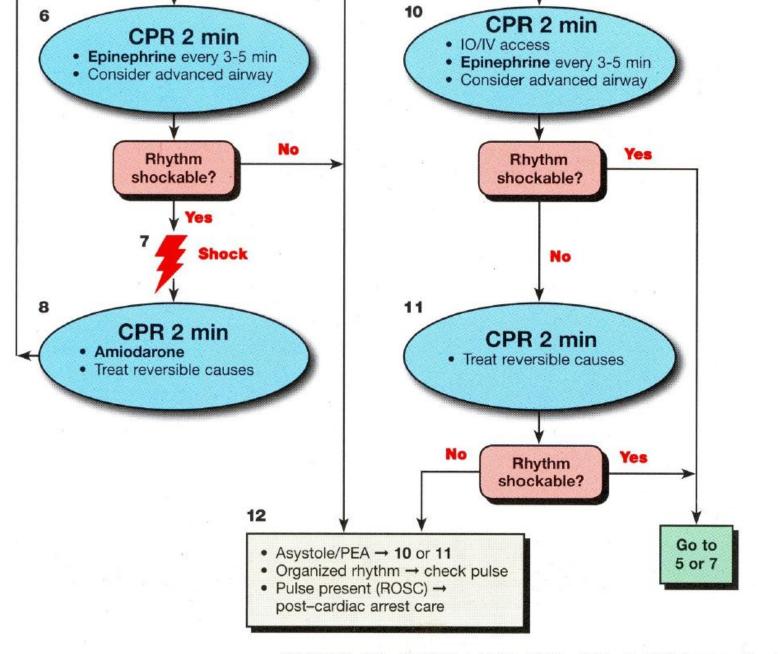
Endotracheal drug administration

- ➤ If no form of vascular access can be obtained in a timely manner, then endotracheal drug administration is possible.
- ➤ Endotracheal (LANE)
 - LIDOCAINE
 - ATROPINE
 - Naloxone
 - **E**PINEPHRINE

Note: flush each medication with 3-5 ml of NS

> This route of administration is not preferred because absorption varies widely.

Shout for Help/Activate Emergency Response Start CPR Give oxygen · Attach monitor/defibrillator Yes Rhythm shockable? VF/VT Asystole/PEA CPR 2 min IO/IV access Rhythm shockable? Shock CPR 2 min CPR 2 min IO/IV access • Epinephrine every 3-5 min • Epinephrine every 3-5 min Consider advanced airway · Consider advanced airway

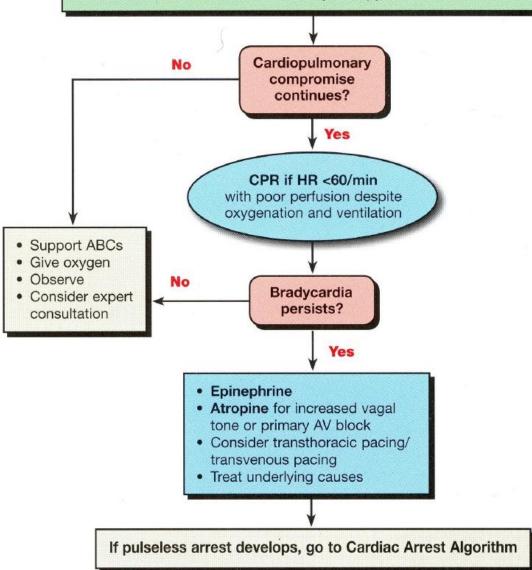

Shock Energy for Defibrillation

First shock 2 J/kg, second shock 4 J/kg, subsequent shocks ≥4 J/kg, maximum 10 J/kg or adult dose.

Drug Therapy

- Epinephrine IO/IV Dose:

 0.01 mg/kg (0.1 mL/kg of 1:10 000 concentration).
 Repeat every 3-5 minutes.
 If no IO/IV access, may give endotracheal dose: 0.1 mg/kg (0.1 mL/kg of 1:1000 concentration).
- Amiodarone IO/IV Dose:
 5 mg/kg bolus during cardiac arrest. May repeat up to 2 times for refractory VF/pulseless VT.


90-1056 (1 of 4) ISBN 978-1-61669-107-3 10/11 © 2011 American Heart .

Pediatric Bradycardia With a Pulse and Poor Perfusion Algorithm

Pediatric Advanced Life Support

Identify and treat underlying cause

- · Maintain patent airway; assist breathing as necessary
- Oxygen
- · Cardiac monitor to identify rhythm; monitor blood pressure and oximetry
- IO/IV access
- 12-Lead ECG if available; don't delay therapy

Cardiopulmonary Compromise

- Hypotension
- · Acutely altered mental status
- · Signs of shock

Doses/Details

Epinephrine IO/IV Dose:

0.01 mg/kg (0.1 mL/kg of 1:10 000 concentration). Repeat every 3-5 minutes. If IO/IV access not available but endotracheal (ET) tube in place, may give ET dose: 0.1 mg/kg (0.1 mL/kg of 1:1000).

Atropine IO/IV Dose:

0.02 mg/kg. May repeat once. Minimum dose 0.1 mg and maximum single dose 0.5 mg.

Pulse with poor perfusion+bradycardia

Among the children who needs resusitation
 Children which have a pulse with poor perfusion and bradycardia have the highest discharge rates, 64%

Part 13: Pediatric Basic Life Support

2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Marc D. Berg, Chair; Stephen M. Schexnayder; Leon Chameides; Mark Terry; Aaron Donoghue; Robert W. Hickey; Robert A. Berg; Robert M. Sutton; Mary Fran Hazinski

Check for alertness.

- Shake or tap the child gently.
- See if the child moves or makes a noise.
- •Shout, "Are you OK?"
- •If there is no response, shout for help.
- •Tell someone to call ambulance
- Perform chest compressions:
- •fast and hard with no pausing.
- •"1,2,3,4,5,6......25,26,27,28,29,30, off."
- Open the airway.
- Look, listen, and feel for breathing.
- •If the child is not breathing:
- •Give 2 rescue breaths. Each breath should take about a second and make the chest rise.
- Continue CPR (30 compressions / 2 breaths) for about 2 minutes.

26 November 2015 The National Motorcycle Museum

Highlights

- ✓ Guidelines 2015
- ✓ The science behind the changes
- Hot topics

Save the date!