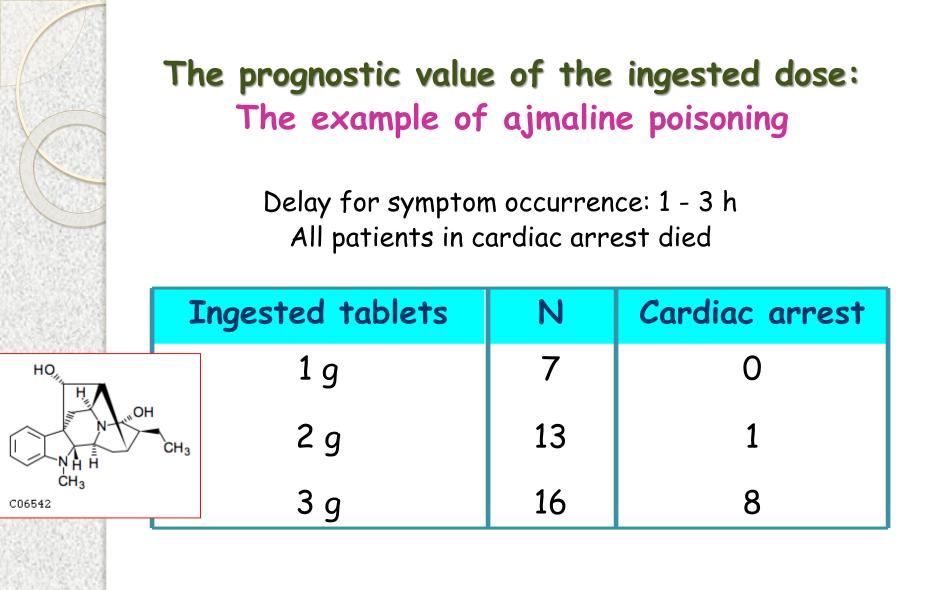
ECMO for treatment of cardiotoxic intoxications

Bruno Mégarbane, MD, PhD

Medical and Toxicological Critical Care Department Lariboisiere Hospital, INSERM UMRS-1144, Paris-Diderot University Paris - France **bruno.megarbane@Irb.aphp.fr**


Poisonings with cardiotoxicants

In the USA: AAPCC-NPDS 2015

Cardiovascular agents: 7th cause of exposures (3.9%) and 2th cause of death (fatality rate: 0.29%)

Mowry JB. Clin Tox 2016

- Cardiovascular pharmaceuticals
 - Sodium-channel blockers (Class I)
 - Beta-blockers (class II)
 - Potassium channel blockers (sotalol) (class III)
 - Calcium-channel antagonists (class IV)
 - Cardioglycosides (class V)
- Non-cardiovascular pharmaceuticals
- Drugs of abuse
- Industrial toxicants
- Plants, household and over-the-counter toxicants

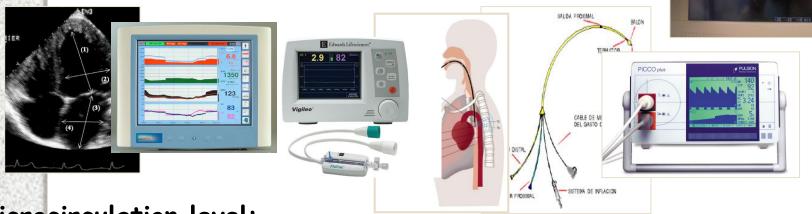
Conso F. Press Med 1980

Strategy of management of toxic cardiovascular failure

Diagnosis of shock

Determination of the mechanism of shock

Definition of the optimal treatment


Diagnosis of the refractoriness of shock

Hemodynamic monitoring of cardiotoxicant poisonings

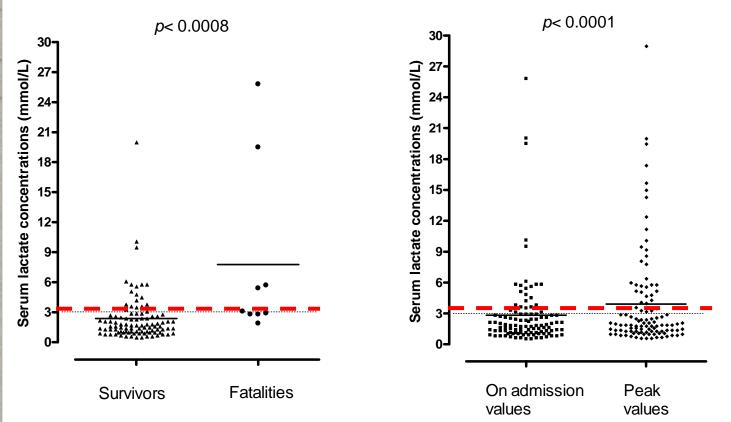
Macrocirculation level:

- Measurement of blood pressure and cardiac index

Microcirculation level:

- Simple signs: dizziness, transitory consciousness loss and collapse, skin discoloration, or even chest pain.

- More sophisticated signs requiring a close and repeated assessment of any change in the mental status, low urine output and routine clinical chemistry (lactate, creatinine and liver function tests).

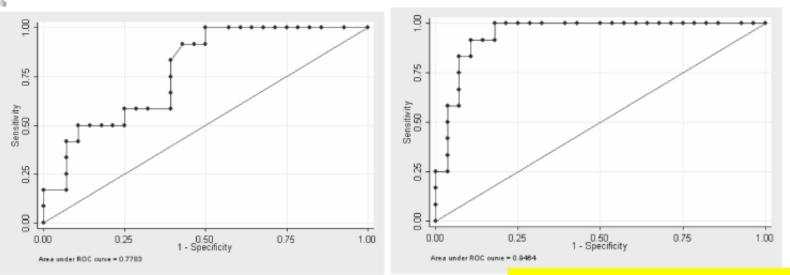

Evaluation of the mechanism of the toxic shock

- 1- Hypotension: systolic BP < 90 mm Hg or systolic BP decrease > 40 mmHg or mean BP < 65 mmHg
 2- Unresponsive to fluids
- 3- At least one sign of organ hypoperfusion

	Peripheral Shock	Cardiogenic Failure	
Cardiac Index (l.min ⁻¹ .m ⁻²)	> 3.5	< 2.5	
Systemic Resistance (d.s ⁻¹ .cm ⁻²)	⁵ .m ²) < 1500	> 2000	
P _{aw} (mmHg)	< 10	> 18	
LVEF (%)	> 70	< 60	

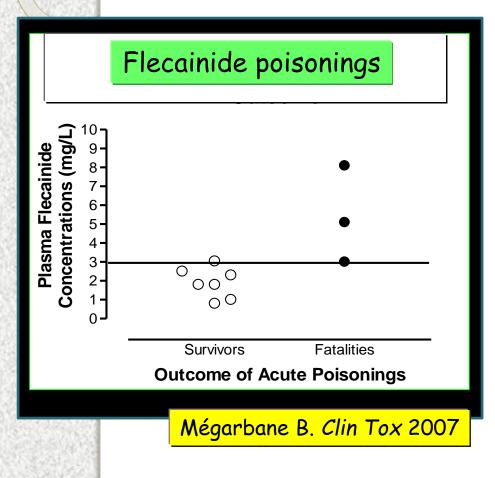
Beta-blocker poisonings Prgnostic value of blood lactate on admission

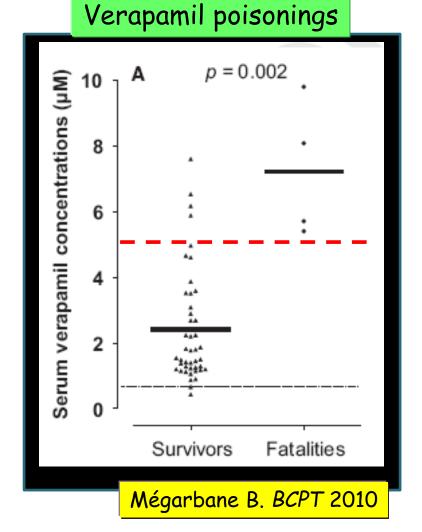
The ROC-AUC of initial lactate for predicting mortality was 0.84 (0.74-0.94).


The cutoff point maximizing the sum of sensitivity and specificity was 2.7 mmol/L. For the 3.0 mmol/L selected lactate cutoff point: 55% sensitivity, 80% specificity.

Mégarbane B. Clin Tox 2010

Calcium-channel antagonist poisonings Predictive value of hyperglycemia


	No Composite End Point	Composite End point	p Value
Total, n	28	12	
Initial blood glucose, mg/dL ^a	129 (98.5-156.5)	188 (143.5-270.5)	.0058
Peak blood glucose, mg/dLa	145 (107.5-160.5)	364 (267.5-408.5)	.0001
Initial heart rate, beats/min ^a	60 (45-87)	50.5 (40-67.5)	.18
Minimal heart rate, beats/min ^{a,b}	58 (40-68)	40 (39-45)	.0589
Initial systolic blood pressure, mm Hg ^a	129 (100-144)	89 (60-113)	.0091
Lowest systolic blood pressure, mm Hg ^{a,b}	110.5 (94-130)	72 (60-84)	.0004


"Median (interquartile range); blowest value during the first 24 hrs of admission.

Levine M. Crit Care Med 2007

The prognostic value of plasma cardiotoxiant concentrations in acute poisonings

Conventional supportive treatments in ICU

- Intubation and mechanical ventilation :
 - Severe arrhythmias and associated collapse
 - Coma, convulsions, respiratory failure
- Treatment of collapse/shock
 - Fluids + adequate catecholamines
- Treatment of torsade-de-pointes
 - Defibrillation, MgSO₄, titrated isoproterenol, cardiac pacing
 - Correction of electrolyte imbalance (K⁺, Mg²⁺)
- * Treatment of monomorphic ventricular tachycardia
 - Defibrillation, MgSO₄, lidocaine infusion

* Cardiac pacing

High degree AV block with preserved inotropism

Place of GI decontamination and elimination enhancement

- Activated charcoal: within 2 h following the ingestion
- Repeated doses of charcoal: Low-sustained forms
- Dialysis: limited interest as
 - Elevated protein binding
 - Elevated distribution volume
 - Liposolubility
 - Elevated endogenous clearance

Refractoriness requires failure of the optimal administration of antidotes in the ICU (1)

Beta-blockers

Dobutamine 5-20 µg/kg/min Isoprenaline 1-5 mg/h (Sotalol)

Glucagon 2-5 mg IV bolus 2-10 mg/h continuous infusion

Epinephrine 0.5-10 mg/h

± Cardiac Pacing

Calcium channel blockers

Calcium chloride 1 g IV bolus /15 min 4 doses, 20-50 mg/kg/h infusion

Insulin 1 IU/kg IV bolus 1-10 IU/kg/h continuous infusion

Epinephrine 0.5-10 mg/h Norepinephrine 0.5-10 mg/h

Methylene blue 2 mg/kg bolus 1 mg/kg/h infusion

Refractoriness requires failure of the optimal administration of antidotes in the ICU (2)

Sodium channel blockers

Sodium bicarbonates 8.4% 250 ml to be repeated 3 times + 2g KCl / 250 ml (cocaine: Lidocaine IV)

Epinephrine 0.5-10 mg/h Norepinephrine 0.5-10 mg/h

Cardioglycosides

Atropine 0.5-1 mg to be repeated

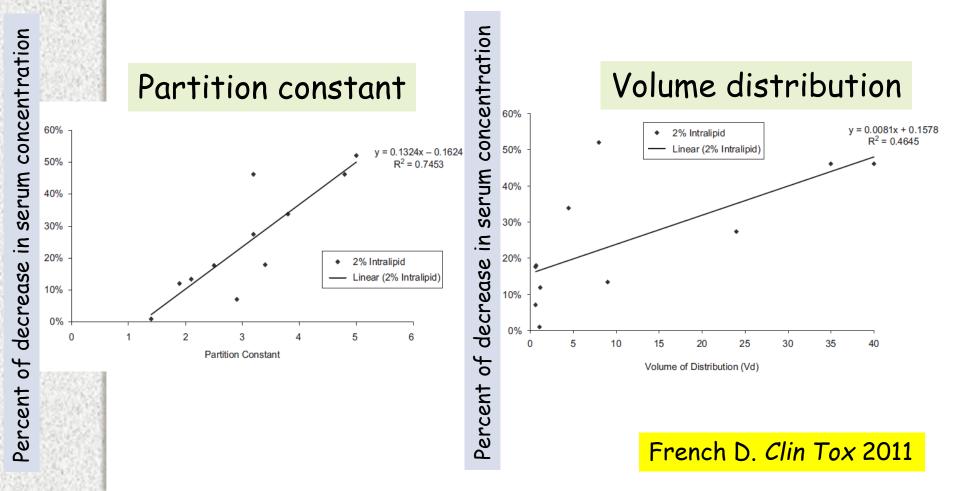
Anti-digoxin Fab fragments Semi-molar or molar dose (if not available: ventricular pacing)

Lipid emulsion to treat cardiotoxicant drug-related toxicity

To treat severe anesthetics side-effects in the OR as well as membrane-stabilizing agent or calcium-channel blocker poisonings.

Dose regimen: 1.5 ml/kg IV bolus then 0.25 ml/kg/min infusion

Mechanisms:


- Lipid sink / sponge: alteration of tissue distribution
- Modulator of myocardial energy, overcoming the inhibition of fatty acid-dependent metabolism
- Activator of myocardial Ca²⁺ channel increasing Ca²⁺ current
- Other toxin-specific mechanisms?

Sirianni AJ. Ann Emerg Med 2008 Finn SD. Anesthesia 2009 Weinberg GL. Anesthesiology 2009

Partition constant and volume of distribution as predictors of ILE efficacy for toxicological emergencies

Serum drug concentration decrease plotted against the partition constant and the volume of distribution of eleven drugs with 2% Intralipid® added to the sample

For the management of cardiac arrest:

We recommend using ILE with bupivacaine toxicity, while our recommendations are neutral regarding its use for all other toxins.

For the management of life-threatening toxicity:

- We suggest using ILE as a part of treatment in bupivacaine toxicity and we recommend its use if other therapies fail;

- We suggest using ILE if other therapies fail for toxicity due to other local anesthetics, amitriptyline, and bupropion;

- Our recommendations are neutral for all other toxins.

In the treatment of non-life-threatening toxicity, recommendations varied according to the balance of expected risk/benefit for each toxin

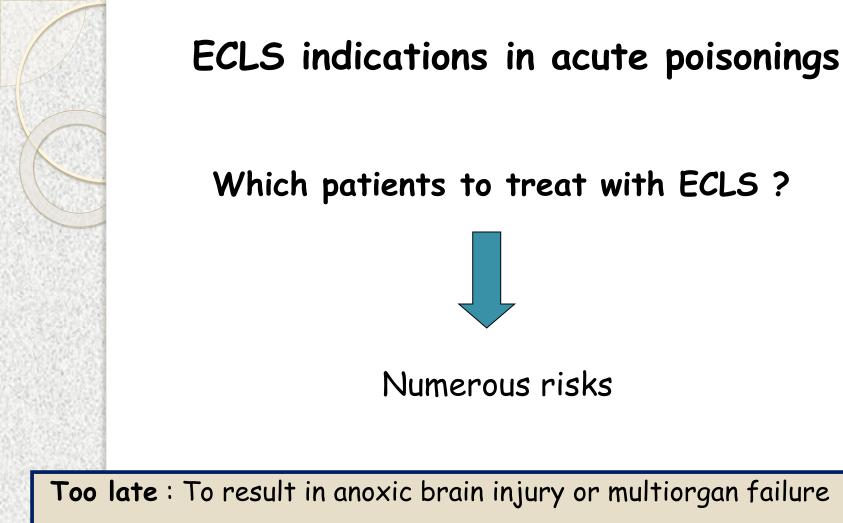
Gosselin S. Clin Tox 2016

Refractoriness to the conventional therapies (supportive care + catecholamine + antidotes)

F, 17 years, severe propranolol poisoning

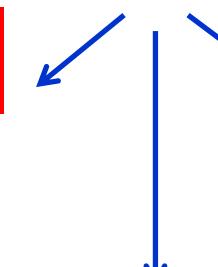
Sedation + mechanical ventilation + FiO_2 100%

	Epine	phrine 1.5 mg/h	Dobutamine	15 µg/kg/min
BP	S	93	56	mmHg
	D	64	33	mmHg
	Μ	75	43	mmHg
P_{RA}		7	6	cmH_2O
P _{AP}	S	27	19	cmH_2O
	D	19	11	cmH_2O
	Μ	23	15	cmH_2O
P_{cw}		17	13	cmH_2O
	iac Index	1.4	1.8	l/min/m ²
Syst	emic resistances	50.3	20.3	UI
		30 mi	n later Dramatic dec	crease in BP .


VA-ECMO in cardiogenic schock

The purpose of VA-ECMO is to take over heart function until recovery can occur, minimizing myocardial work, improving organ perfusion and maintaining the renal and biliary elimination of the toxicant

Baud FJ. Crit Care 2007

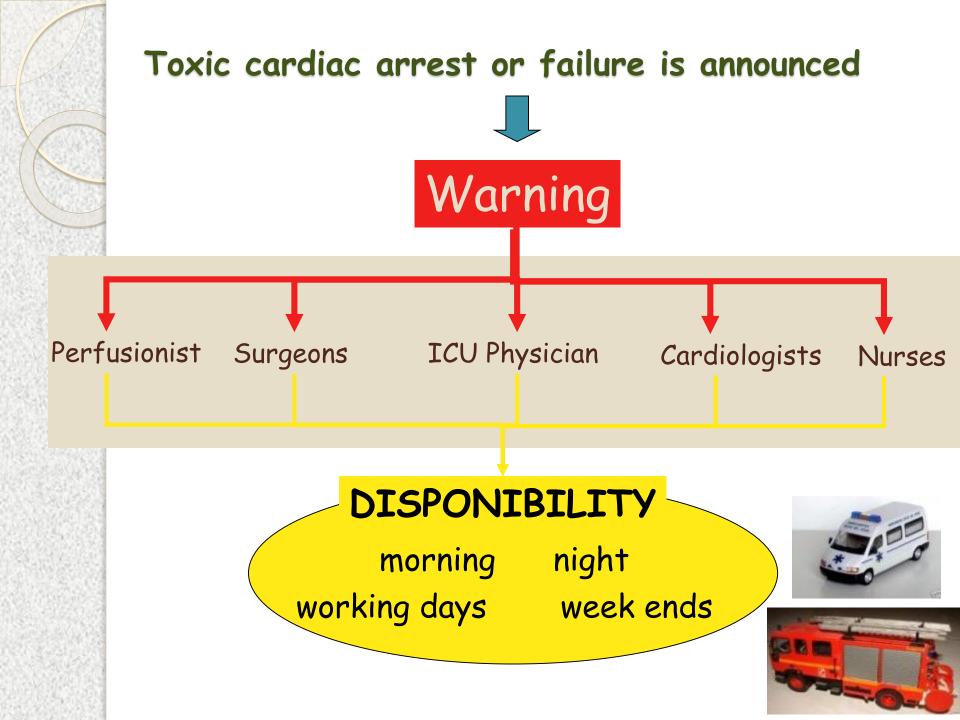


Undiscriminated use: to treat patients who would spontaneously have had favorable outcome with pharmacological treatments

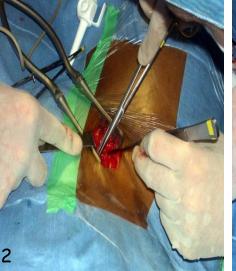
Two options to bring ECMO to the patient

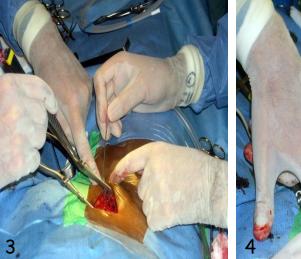
To transfer the patient to Cardiac Surgery Department

To implement ECMO by mobile TCS team



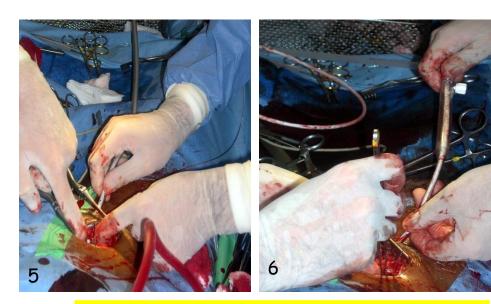
To develop an ECMO program in the ICU in our hospital devoid of cardiac surgery

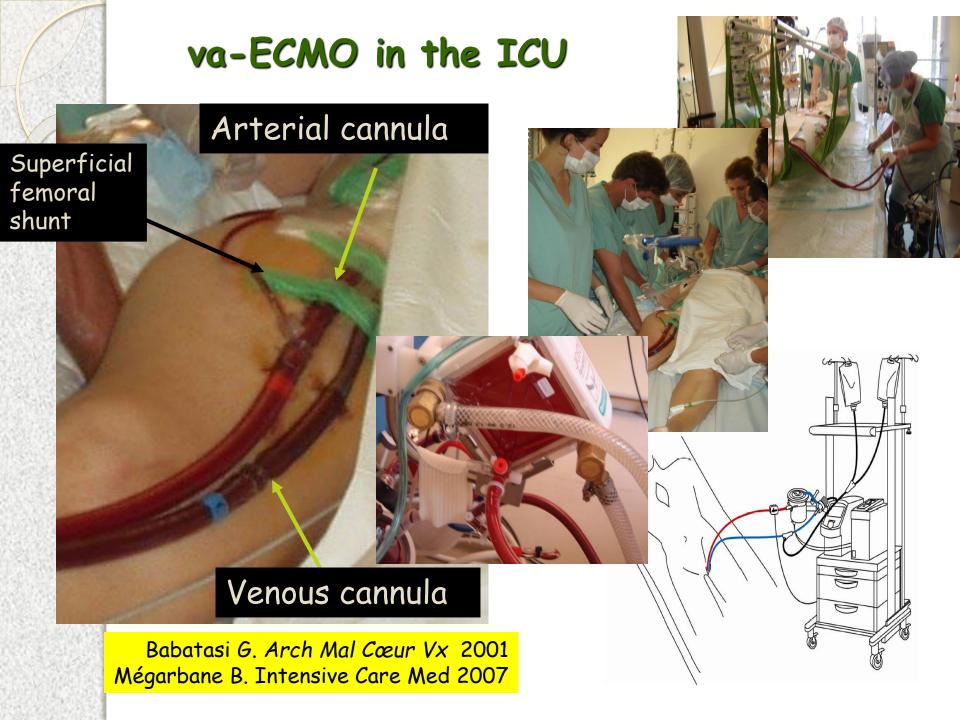

Specialized team in ICU

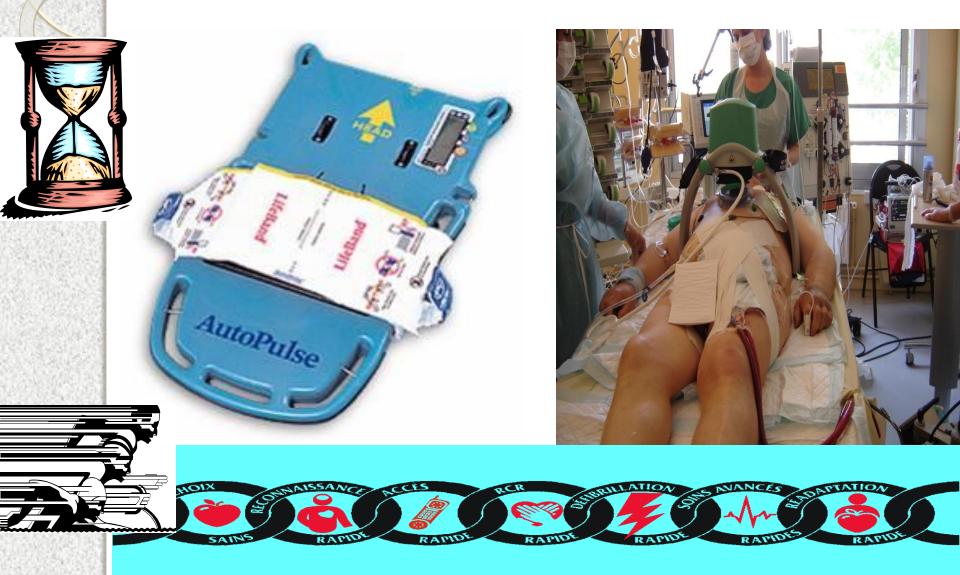


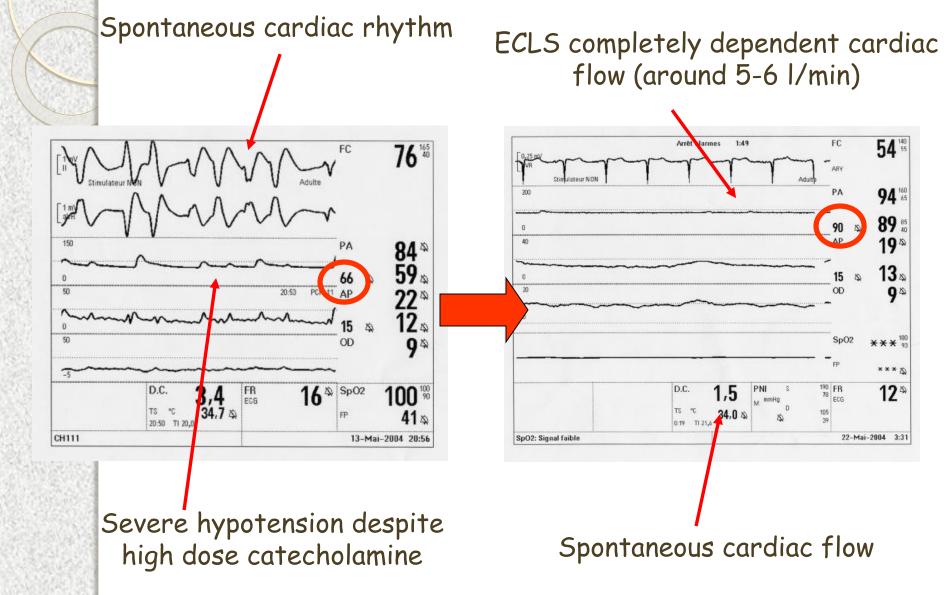
Cannulation of femoral vessels in medical ICU






Femoral arcade


Femoral artery Femoral vein


Mégarbane B. Intensive Care Med 2007

Adequate cardiac massage and ACLS are the keys for good prognosis in patients with cardiac arrest before va-ECMO implementation



va-ECMO monitoring in the ICU

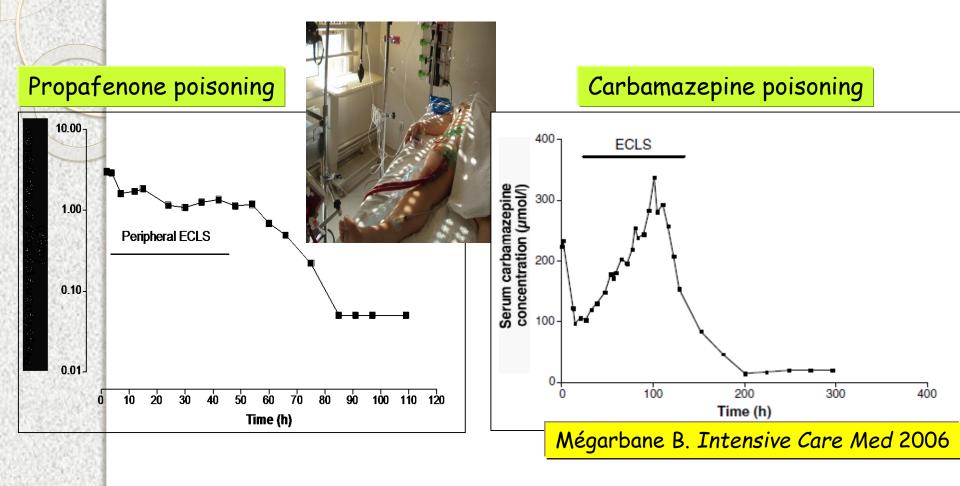
Monitoring of VA-ECMO-treated patients in the ICU

- Efficient anticoagulation: heparin to obtain ACT = 2N
- Catecholamines
 for mean BP = 60-70 mmHg +
 dobutamine to facilitate LV discharge
- Adequate transfusions
- Adapted Mechanical ventilation ABG monitoring by radial catheter
- Temperature control
- Canulated lower limb monitoring
- Echocardiography: weaning criteria
- Neurological evaluation (EEG, clinical)
- Care, nursing

Published cases of va-ECMOtreated acute poisonings:

- Beta-blockers

- CCB
- Sodium channel blockers


De Lange DW. Clin Tox 2013

Agent	References
Acebutalol	29,37
Amiodarone	38
Antidepressants (tricyclic)	15,29,39-41
Arsenic	42
Atenolol	29
Bisoprolol	29
Bupropion	43
Calcium Channel Blockers	1,44-49
Carbamazepine	29,50
Carbon monoxide	51
Chloroquine	15,52
Cibenzoline	29,53
Citalopram	29
Cocaine	54
Disopyramide	29,55
Diltiazem	29
Flecainide	29,56-58
Hydrocarbon products	59-63
Ibuprofen	64
Lidocaine	65
Mepivacaine	66
Methadone	67
Metoprolol	29
Opioids	67-69
Organophosphates	70
Paraquat	31,32
Paroxetine	29
Phosphine	71
Propafenone	15,29
Propranolol	29,72-74
Quetiapine	75
Quinidine	76
Radiocontrast material (intravenous)	77
Sotalol	29,78
Taxus	79
Venlafaxine	29
Verapamil	29
Zinc chloride	80
Zotepine	81

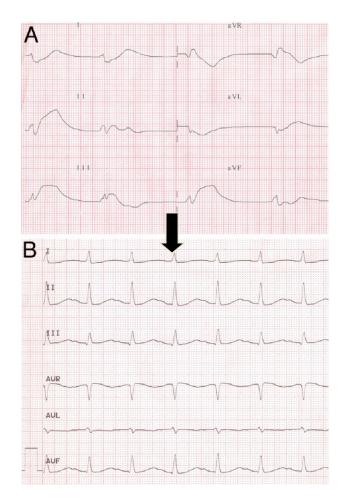
Outcome of poisoned patients treated with ECLS

	Total (N=112)	Cardiac failure (N=41)	Refractory arrest (N = 71)
Survival	35 (31%)	22 (54%)	13 (18%)
Neurological sequellae	4	3	1
Hemorrhagic accidents	18	4	14
Thombo-embolic complications	6	4	2
Lower limb ischemia	8	6	2

Toxicokinetics in severe poisonings requiring ECMO

- T_{1/2}: 30 h (pharmacology: 4 h)
- Vd: 151 l/kg
- Clearance: 262 l/h

- Concentration on admission: 224 $\mu mol/l$
- Peak concentration: 338 µmol/l at 101 h
- Prolonged absorption despite MDAC
- T_{1/2}: 22.6 h (pharmacology: 12-20 h)



Death of ECLS-treated poisoned patients

- Death resulted from multiorgan failure, anoxic encephalopathy or capillary leak syndrome if ECLS was performed under cardiac massage.

- Four patients presented documented brain death, allowing organ donation in 2 cases.

- The heart of one flecainidepoisoned patient was successfully transplanted, after normalization of ECG and myocardial function as well as toxicant elimination under ECLS.

Vivien B. Ann Emerg Med 2010

Take home messages

Shock and arrhythmias following poisonings with cardiotoxicants (especially with digitalis, sodium-channel, and calcium channel blockers) may lead to life-threatening symptoms and death.

- Adequate monitoring of severity and assessment of prognostic criteria are mandatory to improve patient management.
- Treatment is mainly supportive. Despite the absence of high-level of evidence, administration of antidotes is life-saving.
- ECMO should be considered in refractory cardiovascular failure or cardiac arrest although its definitive benefit needs to be evaluated.

38th CONGRESS OF THE EAPCCT B UROPEAN ASSOCIATION OF POISONS CENTRES AND CLINICAL TOXICOLOGISTS

22-25 MAY 2018 (S) BUCHAREST

www.eapcct2018.com

#eapcct2018