ISKEMİK İNMELERDE GELECEKTE BİZİ NELER BEKLİYOR? Uzm. Dr. Ali GÜR Van Acil Sağlık Hizmetleri Başkanı #### **SUNUM PLANI** - Tanım ve İnmenin Önemi - Güncel Tedavi Yaklaşımları - Son Yayınlar #### İnme Genellikle bir kan damarının yırtılması ya da pıhtı ile tıkanması sonucunda beyine kan akımının kesilmesi ya da azalmasıdır Acil bir durumdur. #### İnme - Dünya'da %85 iskemik, %15 hemorajik - Ortak yolak değişmiş nöronal hipoperfüzyon - Nöronlar serbest kan akımının değişikliğine son derece duyarlı ve perfüzyon kesilirse hızlıca ölürler - Bu durum hızlı perfüzyon stratejilerinin amacını açıklamaktadır ## Acil inme bakımı 4 basamaklı zincire bağımlıdır İnmeden şüphelenilen hasta 1 TOPLUM - İnme semptomlarının tanınması - Uygun tepkinin verilmesi ACİL ÇAĞRI SERVİSİ - İnme belirtilerinin saptanması - Acil hizmete yönlendirme önceliği 3 ACİL NAKİL (AMBULANS) HİZMETİ - Hızla değerlendirme ve stabilize etme - İnme merkezlerine transfer önceliği - Hastanenin önceden bilgilendirilmesi - Hızla triyaj, değerlendirme ve görüntüleme - Multidisipliner inme ekibi - Doğru tanı -) Uygun tedavi #### Öncelikli nakil ve tedavi #### **INME** - Fibrinolitik tedaviye aday hastalar için hastane öncesi inme skalaları geliştirilmiştir. - Cincinati - Los Angeles - Acil Serviste İnme Yönetimi (<3-4,5 Saat) ## **GÜNCEL TEDAVİ YAKLAŞIMLARI** - 1996 yılına kadar inmede bekle ve gör - 1996 yılında akut iskemik inmede rtPA uygulandı. - 1996-2010 yılları arasında ilk 3 saat - 2010 yılından sonra ilk 4,5 saat - 2018 yılında 24 saate kadar trombektomi ## 2019 yılından sonra.... #### Son Yayınlar | S NCBI Resources ☑ | How To ☑ | | |--|----------|----------| | Pub Med.gov | PubMed | ▼ | | US National Library of Medicine
National Institutes of Health | | Advanced | Format: Abstract + Ther Adv Neurol Disord. 2019 Jan 20;12:1756286418821918. doi: 10.1177/1756286418821918. eCollection 2019. #### Human tissue kallikrein in the treatment of acute ischemic stroke. Alexander-Curtis M1, Pauls R2, Chao J3, Volpi JJ4, Bath PM5, Verdoorn TA2. Author information #### Abstract Acute ischemic stroke (AIS) remains a major cause of death and disability throughout the world. The most severe form of stroke results from large vessel occlusion of the major branches of the Circle of Willis. The treatment strategies currently available in western countries for large vessel occlusion involve rapid restoration of blood flow through removal of the offending blood clot using mechanical or pharmacological means (e.g. tissue plasma activator; tPA). This review assesses prospects for a novel pharmacological approach to enhance the availability of the natural enzyme tissue kallikrein (KLK1), an important regulator of local blood flow. KLK1 is responsible for the generation of kinins (bradykinin and kallidin), which promote local vasodilation and long-term vascularization. Moreover, KLK1 has been used clinically as a direct treatment for multiple diseases associated with impaired local blood flow including AIS. A form of human KLK1 isolated from human urine is approved in the People's Republic of China for subacute treatment of AIS. Here we review the rationale for using KLK1 as an additional pharmacological treatment for AIS by providing the biochemical mechanism as well as the human clinical data that support this approach. KEYWORDS: acute ischemic stroke; bradykinin; human tissue kallikrein; recombinant KLK1; vasodilation ### Akut İskemik İnme tedavisinde İnsan Doku Kalliklerini - Yeni bir farmakolojik yaklaşım için yerel kan akışının düzenleyicisi olan doğal enzim dokusu kallikrein (KLK1) kullanılabilirliğini artırmak - Akut iskemik inmeli hastalarda KLK1 tedavisi ile mekanik tedavi, inme de klinik öncesi ve sonrası tedaviyi iyileştirmek.. - KLK1 → vazodilatasyon - Düşük kalliklerin---- vazokonstriksiyon ### Akut İskemik İnme tedavisinde İnsan Doku Kalliklerini Farelere IV KLK1 infüzyonu 24 saatlik süre içinde Beyin ödeminin azalması, hücrelerin apopitozdan korunması, anjiogenezis - KLK1 İskemi ve reperfüzyon nedeni olduğu beyin hasarı bakımından kritik rol oynar - inme sonrası hastalara ve plasebo grubuna 21 gün, günde 30 dk inf. (China) - 90 gün sonra Europen Stroke Scale skorunda anlamlı fark tespit edilmiş. - Yan etki %0,5-5. hipotansiyon, kusma, Table 1. Summary of uKLK1 clinical trials since 2010. | Study | Reference | Design | Total N | Functional
endpoint | Effect
size ^a | Significance
between groups | |-------|--------------------------------------|-------------------------------------|---------|-----------------------------------|-----------------------------|--------------------------------| | 1 | Wang and
colleagues ⁹¹ | Prospective randomized double blind | 44 | NIHSS, 6-72 h
post treatment | 0.011 | 0.858 | | | | | | NIHSS, 14 days
post treatment | -0.04 | p = 0.049 | | | | | | MBI, 30 days post treatment | 0.1 | p = 0.032 | | 2 | Song
and colleagues ⁹² | Prospective randomized controlled | 27 | NIHSS, 6 mo.
after treatment | 1.40 | <i>p</i> < 0.05 | | | | | | BI, 6 mo. after
treatment | 1.45 | p < 0.05 | | 3 | Chen
and colleagues ⁹³ | Controlled | 127 | NHISS after
treatment | 1.09 | <i>p</i> < 0.05 | | | | | | BI, after
treatment | 2.85 | <i>p</i> < 0.05 | | 4 | Meng and colleagues ⁹⁴ | Controlled | 120 | NDS | 1.00 | <i>p</i> < 0.05 | | 5 | Wang and colleagues ⁹⁵ | Controlled | 200 | NIHSS, 7 days
after treatment | 2.70 | p = 0.045 | | | | | | NISSS, 90 days
after treatment | 0.47 | p = 0.041 | | | | | | BI, 90 days after
treatment | 0.98 | p = 0.012 | | 6 | Li and
colleagues ⁹⁶ | Randomized controlled | 110 | NIHSS, after
treatment | 0.41 | p = 0.04 | | 7 | Miao and
colleagues ⁹⁷ | Nonrandomized controlled | 30 | Change in NIHSS | 0.85 | p = 0.04 | $^{\circ}$ Effect size calculated by Cohen's d statistic for differences between treatment and control group for each endpoint. Significance between groups was the p value reported in the cited paper. ### Akut İskemik İnme tedavisinde İnsan Doku Kalliklerini KLK1 tedavisi AIS tedavisinde iyileşmeye katkı sağlayıp patogenezinde rol oynayan nedenleri de önleyebilir. Format: Abstract + Front Neurol. 2019 Jan 9;9:1119. doi: 10.3389/fneur.2018.01119. eCollection 2018. #### Role of Decompressive Craniectomy in Ischemic Stroke. Pallesen LP1, Barlinn K1, Puetz V1. Author information #### Abstract Ischemic stroke is one of the leading causes for death and disability worldwide. In patients with large space-occupying infarction, the subsequent edema complicated by transtentorial herniation poses a lethal threat. Especially in patients with malignant middle cerebral artery infarction, brain swelling secondary to the vessel occlusion is associated with high mortality. By decompressive craniectomy, a significant proportion of the skull is surgically removed, allowing the ischemic tissue to shift through the surgical defect rather than to the unaffected regions of the brain, thus avoiding secondary damage due to increased intracranial pressure. Several studies have shown that decompressive craniectomy reduces the mortality rate in patients with malignant cerebral artery infarction. However, this is done for the cost of a higher proportion of patients who survive with severe disability. In this review, we will describe the clinical and radiological features of malignant middle cerebral artery infarction and the role of decompressive craniectomy and additional therapies in this condition. We will also discuss large cerebellar stroke and the possibilities of suboccipital craniectomy. KEYWORDS: craniectomy; middle cerebral artery infarction; posterior circulation stroke; prognosis; stroke # İskemik İnmede Decompresive Craniectomy'nin Rolü - Randomize–kontrollü bir meta analiz çalışması - Geniş enfarklı hastalarda ödemin komlikasyon ile transtentorial herniasyon ve ölümcül sonuç - Özellikle orta serebral arterin oklüzyonu yüksek mortalite # İskemik İnmede Decompresive Craniectomy'nin Rolü - Craniektomi ile etkilenen alandaki basınç artışı azaltılıp etkilenmeyen alana doğru herniasyon ve daha fazla dokunun etkilenmesi önleniyor - Orta serebral arter enfartının dekompresyonla iyileşmesi - Dekompresif cerrahinin <60 yaş altında (%19 vs. 4%) - Çok geniş MCA enfarklarında tek yol... TABLE 2 | Overview of the randomized controlled trials (RCTs). Inclusion from symptom onset (hours) Imaging criteria ACA/PCA territory or >2/3 MCA territory; with/without ACA/PCA >145 cc territory cerebral infarct volume | | | (Hours) | | | | | (DC/DWIT) | |----------------|-------|---------------|--|---|--|---|-------------| | DECIMAL | 18–55 | <24 | >50% ischemic MCA
territory; MRI-DWI infarct
volume >145 cc | NIHSS >15; NIHSS 1a ≥ 1 | mRS 0-3 at 6 months | 52.5% absolute mortality reduction with DC compared to BMT (p < 0.0001); no significant difference between DC and BMT regarding mRS 0-3 | 38 (20/18) | | DESTINYI | 18–60 | >12 to
<36 | ≥2/3 MCA territory with
basal ganglia; with/without
ACA/PCA territory | NIHSS >18
(non-dominant) or
>20 (dominant);
NIHSS 1a ≥1 | Sequential design:
mortality after 30 days;
mRS 0-3 vs. 4-6 at 6
months | Mortality reduction from 88% to 47% with DC after 30 days ($p = 0.02$) | 32 (17/15) | | HAMLET | 18–60 | <96 | ≥2/3 MCA territory;
formation of space
occupying edema | NIHSS ≥16 (right) or ≥21
(left); NIHSS 1a ≥1; GCS
<13 (right-sided) or GCS
(eye and motor score) < 9
(left-sided) | mRS 0-3 vs. 4-6 at 12 months | DC with no effect on
primary outcome measure
but significant reduction of
case fatality (ARR 38%) | 64 (32/32) | | Zhao et al. | 18–80 | <48 | ≥2/3 MCA territory;
with/without ACA/PCA
territory; space-occupying
edema | GCS (eye and motor score)
≤9 | mRS 0-4 vs. 5-6 at 6 months | Reduction of mortality (DC 12.5% vs. BMT 60.9 %, p = 0.001) and mRS 5-6 (DC 33.3% vs. BMT 82.6 %, p = 0.001) | 47 (24/23) | | HeADDFIRST | 18–75 | <96 | ≥50% ischemic MCA
territory(<5h) or complete
MCA infarction (<48h) | NIHSS ≥18; NIHSS 1a <2 | survival 21 days | Non-significant reduction of mortality at 21 days (DC 21% vs. BMT 40%, p = 0.39) | 24 (14/10) | | DESTINY II | >60 | <48 | ≥2/3 MCA territory with
basal ganglia | NIHSS >14 (non-dominant)
or >19 (dominant), reduced
level of consouscness on
NIHSS | mRS 0-4 at 6 months | Significant reduction of severe disability (mRS scores 5–6: DC 38% vs. BMT 18%, $p = 0.04$) | 112 (49/63) | | Slezins et al. | >18 | <48 | ≥2/3 MCA; with/without | NIHSS >15 | mRS 0-4 vs. 5-6 at 12 | Significant mortality | 24 (11/13) | GCS 6-14 (right-side) or NIHSS ≥1a ACA, indicates anterior cerebral artery; ARR, absolute risk reduction; BMT, best medical treatment; DC, decompressive craniectomy; GCS, Glasgow Coma Scale; MCA, middle cerebral artery; mRS, modified Rankin Scale; NIHSS, 5-9 (left-side); GCS 15 and Clinical criteria Primary outcome parameter months months mRS 0-3 vs. 4-6 at 6 Main finding reduction (DC 45.5% vs. BMT 7.7%, p = 0.03) No significant differences p = 0.476) (DC 23.1% vs. BMT 38.4%, Patients included, n (DC/BMT) 29 (16/13) 18-65 National Institute of Health Stroke Scale; PCA, posterior cerebral artery. <72 Age (years) Study name HeMMI #### **NE ZAMAN** cerrahi? PMID: 30740085 PMCID: PMC6355668 DOI: 10.3389/fneur.2019.00011 See all... TABLE 1 | Decompressive craniectomy for stroke studies. | | Author | Study
design | Patients | Selection
criteria | Treatment | Total no
of
patients | Time
to DC | - | Functional outcome at 6 months | Functional
outcome
at 12 months | Conclusions | |--------------------------|-----------------------|--------------------------------|--|--|-----------------------|----------------------------|-------------------------------------|----------|----------------------------------|---------------------------------------|---| | | Vahedi et al.
(8) | Randomized controlled trial | | Patient age 18–55 years, within 24 h of a malignant MCA infarction, NIHSS ≥ 16,; >50% of the MCA territory involved on CT; DWI infarct volume >145 cm ³ | DC | 20 | Avg 20.5 ± 8.3 h
(range, 7-43 h) | 5 (25) | mRS score ≤3:
25% | mRS score ≤3:
50% | When compared to medical management, the DC group demonstrated an increase in the number of patients with moderate disability by more than half and demonstrated a reduction in the mortality rate by more than half. | | | | | | | Medical
management | 18 | NA | 14 (78) | mRS score ≤3:
5.6% | mRS score ≤3:
22.2% | | | Juttler
(9) | Juttler et al.
(9) | Randomized
controlled trial | | Patient age 18–60 years, at least 2/3 of MCA territory infarction with basal ganglia involvement, NIHSS > 18 for non-dominant hemisphere, NIHSS > 16 for dominant hemisphere, symptoms > 12 h but <36 h before possible DC | DC | 17 | Within 36 h after
stroke | 2 (11.8) | mRS score ≤3:
47% | mRS score ≤3:
47% | DC reduces mortality in
large hemispheric stroke.
Functional outcomes at 6
and 12 months were
comparable between both
groups | | | | | | | Medical
management | 15 | NA | 8 (53.3) | mRS score ≤3:
27% | mRS score ≤3:
27% | | | Hofmeijer
et al. (10) | - | Randomized controlled trial | | Patient age 18–60, at least
2/3 of MCA territory stroke
within 96 h of treatment,
NIHSS score >16 right
sided lesions or >21 left
sided lesions, | DC | 32 | Within 96 h after
stroke | 7 (22) | NA | mRS score
≤3:25% | DC can improve fatality and functional outcomes when performed within 48 h; however, when delayed up to 96 h, there was no improvement in functional outcomes. | | | | | | | Medical
management | 32 | | 19(59) | NA | mRS score
≤3:25% | | | | | Randomized controlled trial | | Patient age 18-60, at least
2/3 of MCA territory stroke
within 96 h of treatment,
NIHSS score >16 right
sided lesions or >21 left
sided lesions, | DC | 32 | Within 96 h after
stroke | NA | NA | mRS score
≤3:25% | DC can improve fatality
(absolute risk reduction of
38%); however, there was
no improvement in
functional outcomes. | | | | | | | Medical
management | 32 | | NA | NA | mRS score
≤3:25% | | | | Schwab et al.
(12) | Prospective cohort | Adult patients
with MCA
infarction | Patients younger than 70,
>50% MCA territory
infarction noted on CT
imaging | Early DC | 31 | Within 24 h after
stroke | 5 (16) | Avg Barthel Index
Score: 68.8 | NA | Earlier DC was associated
with lower mortality. There
was a trend toward better
functional outcomes, and
the patients spent less time
in the ICU | | Author | Study
design | Patients | Selection
criteria | Treatment | Total no
of
patients | Time
to DC | Mortality
n(%) | Functional
outcome
at 6 months | Functional
outcome
at 12 months | Conclusions | |------------------------|-------------------------|--|--|-----------------------------|----------------------------|--|-------------------|--|---------------------------------------|---| | | | | | Late DC | 32 | >24 h after stroke | 11 (34.4) | Avg Barthel Index
Score: 62.6 | NA | | | | | | | Medical
management | 55 | | 43 (78) | Avg Barthel Index
Score: 60 | NA | | | Wang et al.
(13) | Retrospective
cohort | Adult patients
with MCA
infarction | Patients with 1st stroke >90% MCA infarction | Early DC | 11 | Within 24 h after
stroke | 3 (27) | Mean Glasgow
Outcome Score:
2.5 | NA | While the mortality rates
were comparable betwee
groups, severe disability
may be reduced in early
treated patients | | | | | | Late DC | 10 | >24 h after stroke | 3 (30) | Mean Glasgow
Outcome Score:
2.45 | NA | | | | | | | Medical
management | 41 | | 9 (22) | Mean Glasgow
Outcome Score:
2.73 | NA | | | | Retrospective cohort | Adult patients with MCA infarction | Patients with > 50% MCA infarction with NIHSS score > 20 | Ultra-early DC | 12 | Within 6 h after
stroke | 1 (8.3) | Avg Barthel Index
Score: 70 | NA | DC before neurologic
compromise may reduce
the mortality rate and
increase the conscious
recovery rate | | | | | | Delayed DC | 30 | >6 h after stroke | 11 (36.7) | Avg Barthel Index
Score: 52.9 | NA | | | | | | | Medical
management | 10 | | 8 (80) | Avg Barthel Index
Score: 55 | NA | | | | Retrospective
cohort | Adult patients with MCA infarction | Patients <85 years of age
with patients with embolic
hemispheric infarction
volume > than 200 cm3 | Early DC | 21 | DC before brain
herniation | 4 (19.1) | Avg Barthel Index
Score: 52.9 | NA | Early DC before the onsibrain herniation should be performed to improve mortality and functional recovery. DC after signs herniation may be too last for functional benefit | | | | | | Late DC | 29 | DC after brain
herniation | 8 (27.6) | Avg Barthel Index
Score: 26.9 | NA | | | | | | | Medical
management | 21 | | 15 (71.4) | Avg Barthel Index
Score: 28.3 | NA | | | Elsawaf et al.
(16) | Prospective cohort | Adult patients
with MCA
infarction | Patients with malignant MCA infarction | DC based on clinical status | 27 | DC with
deterioration of
consciousness | 14 (52) | Mean mRS Score:
4.7 | NA | Early prophylactic DC yi
better clinical and
radiographic outcomes
DC based on clinical sta | | | | | | Early DC | 19 | DC within 6 h of stroke | 2 (10.5) | Mean mRS Score: 3.5 | NA | | | | | | | | | | | | | | US National Library of Medicine Advanced ٠ Format: Abstract = National Institutes of Health Send to - Front Cell Dev Biol. 2019 Jan 8;6:175. doi: 10.3389/fcell.2018.00175. eCollection 2018. #### Hypoxia Mimetic Agents for Ischemic Stroke. Davis CK1, Jain SA2, Bae ON3, Majid A2, Rajanikant GK1, Author information #### Abstract Every year stroke claims more than 6 million lives worldwide. The majority of them are ischemic stroke. Small molecule-based therapeutics for ischemic stroke has attracted a lot of attention, but none has been shown to be clinically useful so far. Hypoxia-inducible factor-1 (HIF-1) plays a crucial role in the transcriptional adaptation of cells to hypoxia. Small molecule-based hypoxia-mimetic agents either stabilize HIF-1a via HIF-prolyl hydroxylases (PHDs) inhibition or through other mechanisms. In both the cases, these agents have been shown to confer ischemic neuroprotection in vitro and in vivo. The agents which act via PHD inhibition are mainly classified into iron chelators, iron competitors, and 2 oxoglutarate (2OG) analogs. This review discusses HIF structure and key players in the HIF-1 degradation pathway as well as the genes, proteins and chemical molecules that are connected to HIF-1 and how they affect cell survival following ischemic injury. Furthermore, this review gives a summary of studies that used PHD inhibitors and other HIF-1α stabilizers as hypoxia-mimetic agents for the treatment of ischemic injury. KEYWORDS: hypoxia mimetic agent; hypoxia-inducible factor-1; iron chelators; ischemic stroke; neuroprotection ## İskemi İnme için Hipoksik mimetik Ajanlar - Hipoksi, hücrenin çekirdekte HIF-1 biriktirmesine neden olur - HIF prolyl hydroxylases (PHDs) spesifik HIF-1 hedefli genler yukarı doğru düzenleyerek hücrelerin olumsuz durumun üstesinden gelmesine yardımcı oluyor. - Olaylar Gen Expresyonu yolu ile oluşmaktadır - İn vivo ortamda çalışmaları yapılmış. #### Özet - Akut İskemik İnme tedavisinde İnsan Doku Kalliklerini rutin kullanıma girebilir.. - İskemik İnmede Dekompresif Craniektomi işlemi yaygınlaşacak... - Hipoksik mimetik ajanlar belkide tedavi amaçlı iskemik inmelerde kullanılacak... - 555 ## TEŞEKKÜRLER...