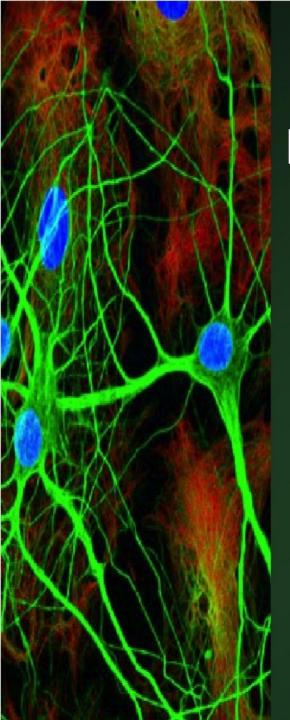
Critical Illness Neuropathy


JILL MCEWEN, MD FRCPC

Clinical Professor & Director Undergraduate Education Program Department of Emergency Medicine University of British Columbia Vancouver, BC Canada Immediate Past President Canadian Association of Emergency Physicians

Vancouver Canada

University of British Columbia, Vancouver BC



Disclosure


• No conflict of interest to declare

Critical Illness Neuropathy Objectives

- Discuss current relevance
- Discuss the spectrum of disorders
- Discuss diagnosis
- Implement preventive measures
- Be aware of the state of current evidence

History

- Osler (1892)
 "Rapid loss of flesh" in sepsis
- Bolton et al (1984)
 ✓ CIN & CIM
- Maher et al (1995)
 Common cause of failure to wean from ventilator

Relevance of Critical Illness Neuropathy

- Common in ICU Patients

 21-74% of critically ill patients

 Increased Morbidity Mortality

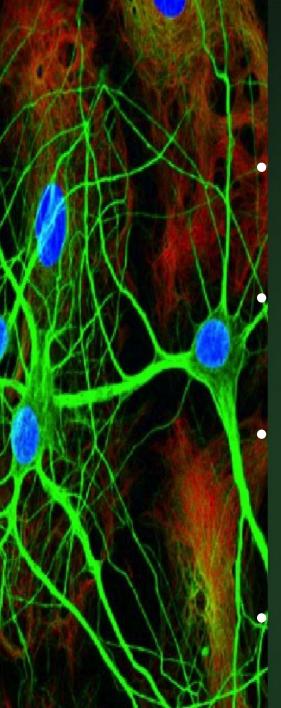
 Short term (in ICU & hospital) &
 Long term (after discharge)

 Decreased Quality of Living
 - Costly
 - Leads to prolonged ICU stay, prolonged hospitalization
 - Prolonged and incomplete post-ICU rehabilitation

Prevalence

Estimates only, due to variability in

- ✓ Diagnostic criteria
- ✓ Patient populations studied


Adults in ICU > 2 weeks

 ✓ mechanical ventilation & sepsis or multiorgan failure:
 - 43-49%*

* Stevens RD et al. (2007). *Neuromuscular dysfunction acquired in critical illness: a systematic review.* Intens Care Med. 33: 1876-91.

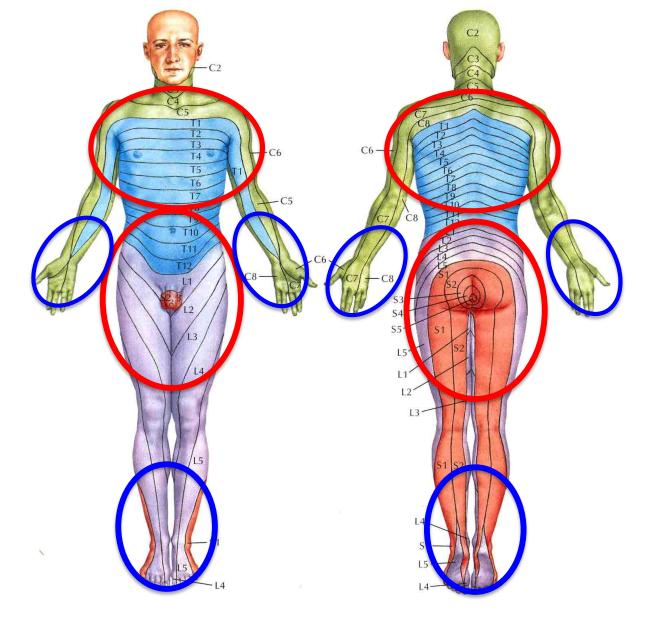
A review paper 21-74% of ICU patients**

** Farhan H et al. (2015). Acquired muscle weakness in the surgical intensive care unit: Nosology, epidemiology, diagnosis and prevention. Anaethesiology 124:1, 207-34.

Definitions

Critical Illness Polyneuropathy (CIP)

- ✓ Limb & respiratory weakness
- ✓ Failure to wean off mechanical ventilation


Critical Illness Myopathy (CIM)

- ✓ Primary myopathy (proximal > distal)
- ✓ Sensory preservation, atrophy

Critical Illness Polymyoneuropathy (CIPMN) or CI Neuromyopathy (CINM)

- ✓ Combination weakness & sensory loss
- ✓ Distal > proximal

Intensive Care Unit Acquired Weakness (ICUAW)

CI Mypoathy – Proximal > distal CI Polyneuropathy – Distal > proximal

CIP (Polyneuropathy)

- Diffuse sensory & motor axonal neuropathy
- 50% of patients with severe sepsis & septic shock
- Onset variable 2 days several weeks after onset of septic shock

CIM (Myopathy)

- Diffuse inflammatory myopathy that involves muscles of limb and trunk
 - Associated with severe sepsis & septic shock
 - Also associated with prolonged periods of drug-induced neuromuscular paralysis, particularly if combined with
 - ✓ high dose corticosteroid therapy
 - ✓ status asthmaticus treated with high dose steroids

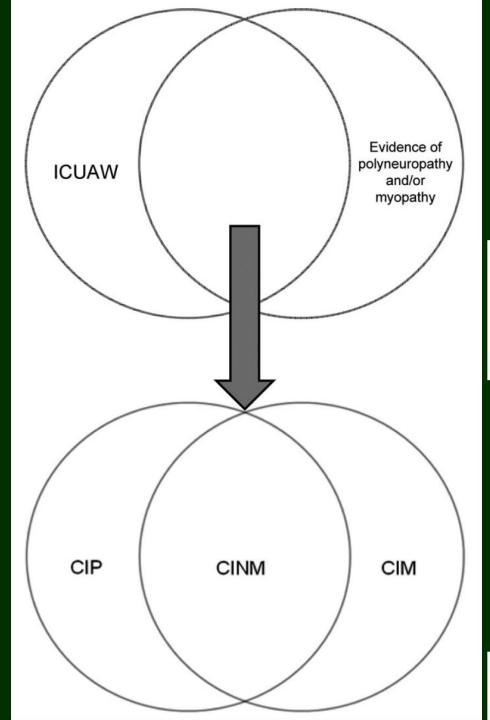
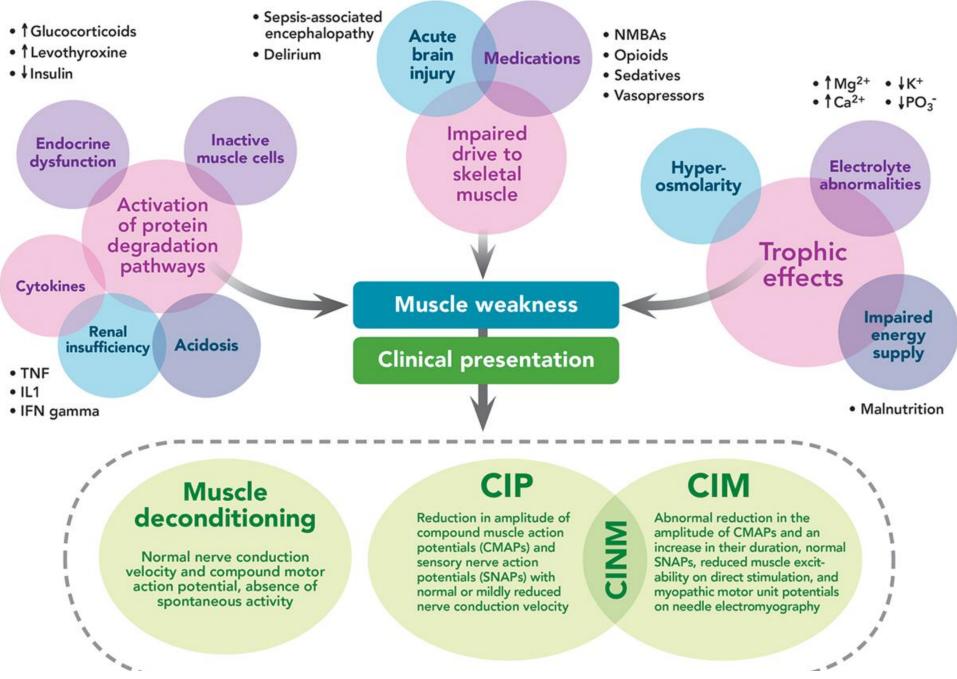
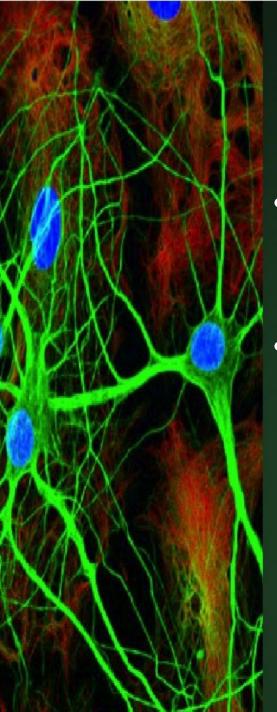
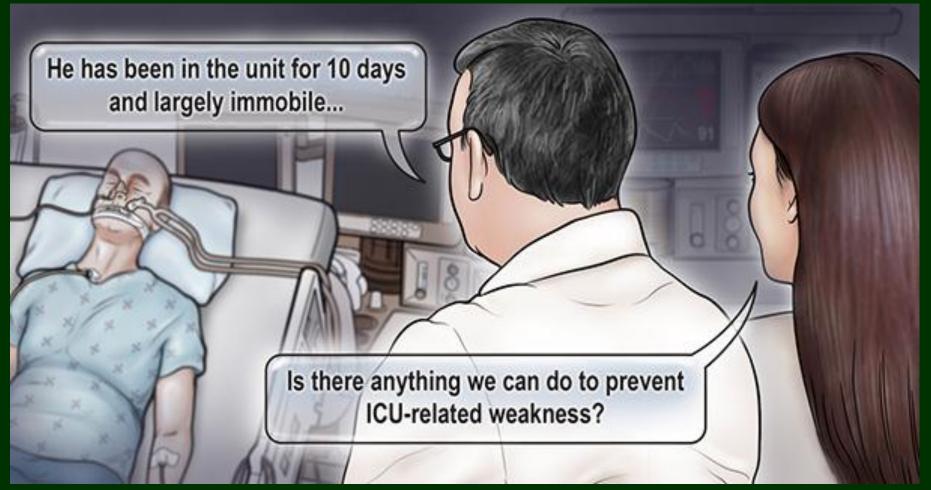




Figure 1. Classification of intensive care unit -acquired weakness (*ICUAW*). *CIP*, critical illness polyneuropathy; *CINM*, critical illness neuromyopathy; *CIM*, critical illness myopathy.

From: Stevens DR et al. (2009). *A framework for diagnosing and classifying intensive care unit-acquired weakness.* Crit Care Med, 37:10, S299-308.

Farhan H et al. (2015). Acquired muscle weakness in the surgical intensive care unit: Nosology, epidemiology, diagnosis and prevention. Anaethesiology 124:1, 207-34.



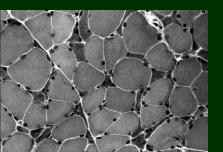
Clinical Features

- Often undetected until there is an unexplained failure to wean off mechanical ventilation
- Physical exam: flaccid paralysis with hypo- or a-reflexia

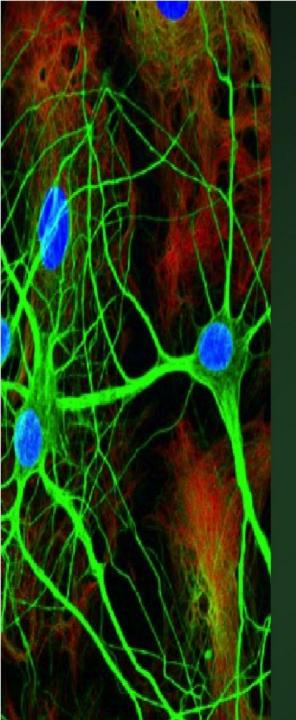
What can be done?

From NEJM Critical Care Challenge: ICU-acquired weakness and recovery from critical illness. doi/story/10.1056/feature.2014.04.15.26

Diagnosis



✓ CIP


nerve conduction studies: slowed conduction in sensory & motor fibres

✓ CIM

electromyography: myopathic changes
muscle biopsy: atrophy, loss of myosin fibrils & inflammatory infiltration

Differential Diagnosis of Neuromuscular Weakness

Includes: •Guillain – Barre syndrome •Rhabdomyolysis •Cachexic myopathy •CIN and CIM

Differential Diagnosis

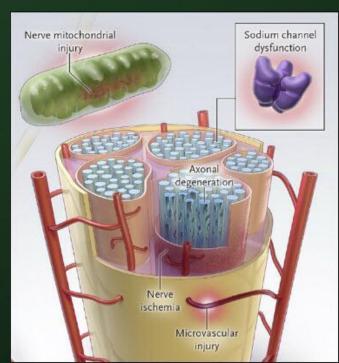
Table 1. Neuromuscular Differential Diagnosis of "Failure to WeanFrom Ventilator".

Motor neuron	Amyotrophic lateral sclerosis Poliomyelitis					
	Guillain-Barre syndrome					
	Critical illness polyneuropathy					
	Critical illness polyneuropathy/myopathy					
	Heavy metal toxicity					
	Vasculitis					
	Sarcoidosis					
	Mononeuritis multiplex					
Neuromuscular junction	Myasthenia gravis					
	Neuromuscular blockade					
	Lambert-Eaton myasthenic syndrome					
	Botulinum toxicity					
	Organophosphate toxicity					
	Tetrodotoxin toxicity					
Muscle	Rhabdomyolysis					
	Mitochondrial myopathy					
	Muscular dystrophy (eg, Myotonic dystrophy)					
	Critical illness myopathy					
	Acid maltase deficiency					

From: Shepherd S et al. (2017). *Review of Critical Illness Myopathy & Neuropathy*. The Neurohospitalist 7:1, 41-48. DOI: 10.1177/19441666329

Diagnostic Criteria

Table 2. Suggested Diagnostic Criteria for Critical Illness Polyneuropathy and Critical Illness Myopathy.^a


CIP	CIM					
Critically ill (sepsis and multi-organ failure)	Not required; typically exposed to variable combination of neuromuscular blocking agent and corticosteroids in the setting of sepsis and multi-organ failure					
Limb weakness is present	Limb weakness is present					
Difficulty in weaning from mechanical ventilatory support with the exclusion of cardiac and pulmonary causes	Difficulty in weaning from mechanical ventilatory support with the exclusion of cardiac and pulmonary causes					
Electrophysiological evidence of	Electrophysiological evidence of					
I. Axonal sensorimotor neuropathy	 Preserved sensory response (>80% of lower limit of normal) Reduced motor responses (compound muscle action potential <80% lower limit of normal) Normal participation and EMC with short 					
	 Normal repetitive nerve simulation, and EMG with short- duration, low-amplitude motor unit potential with early full or normal recruitment of motor unit action potentials Muscle inexcitability with direct muscle stimulation 					
Other causes of acute neuropathy should be excluded, for example, porphyria, acute massive intoxications of heavy metals, and vasculitis	Muscle biopsy consistent with myopathy and myosin loss					
Adaoted from Bolton CF. (2005). Neuromuscular manifestations of Latronico N, & Bolton CF. (2011). Critical Illness polyneuropathy &						

Lancet Neurol: 10:931-41.

Pathophysiology

- Unclear
- Involves pathology in the following mechanisms:
 - ✓ Electrical
 - ✓ Microvascular
 - ✓ Metabolic
 - ✓ Bioenergetic

Representation of potential mechanisms reducing the force-generating potential of skeletal muscle in intensive care unit-acquired weakness.
1: neuropathy; 2: altered myocyte structure and myofilament integrity; 3: sarcoplasmic reticulum (SR) dysfunction; 4: electrical inexcitability 5: bioenergetic failure

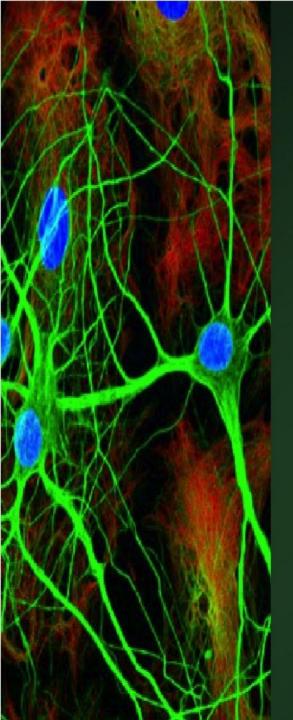
Na⁺

♦Free

adicals

Bloch S et al. Eur Respir J 2012;39:1000-1011

Mitochondr


Critical Illness Cytokines Produced

Microvascular Changes

Vasodilation Permeability Leukocytes extravisation Hypoxemia Metabolic Changes

Hyperglycemia ↑ Catabolism Mitochondrial dysfunction ROS production ↓ Albumin Electrical Changes Na⁺ Channel dysfunction Ca^{2*} Homeostasis dysf'n Cells become inexcitable

Critical Illness Polyneuropathy/Myopathy-

Impact

Depends on population

If mild – can recover in weeks
Full recovery in 50%
10% last > 1 year
Some have long-term paresis

Consequences

- Prolonged need for mechanical ventilation
- Longer ICU stay
- Longer hospital stay
- Slower rehabilitation
- Some may develop contractures

Treatment?

- 1. Prevent Risk Factors whenever possible
 - ✓ Try to decrease ICU time
 - ✓ Wean off ventilator quickly
 - ✓ Aggressively treat sepsis, ARDS
 - ✓ Avoid hyperglycemia

2. Physical & Rehabilitation Therapy

 There are guidelines, however there is limited high quality evidence

A..B..C..D..E..F..G...For Post-ICU QOL

Awake and Breathing Coordination

Choose light sedation & avoid benzos

From Wischmeyer PE & San Millan I. (2015). Winning the war against ICU Acquired Weakness – New innovations in nutrition and fitness. Critical Care, 19:S6

COCHRANE CORNER

EUR J PHYS REHABIL MED 2015;51:655-61

Physical rehabilitation for critical illness myopathy and neuropathy: an abridged version of Cochrane Systematic Review

J. MEHRHOLZ^{1, 2}, M. POHL³, J. KUGLER², J. BURRIDGE⁴, S. MÜCKEL¹, B. ELSNER²

A systematic review:

 Does physical rehabilitation improve activities of daily living in patients with CIP & CIM?

•3587 references >>..... 24.....**0** RCTs

-22 didn't meet diagnostic criteria & 2 not RCTs

Mehrholz J et al. 2015. European Journal of Rehabilitation Medicine. Based on a Cochrane Review, (CDSR) 2015. Issue 3 DOI: 10.1002/14651858.CD010942.pub2.

Problems in rehab literature

- Populations variable
 ✓ No defined CIP or CIM criteria
- Interventions
 - ✓ Cycling
 - ✓ Sit-to-stand training
 - ✓ Walking & gait training
 - ✓ Neuromuscular electrical vs usual therapy
 - ✓ Muscle strength training

Prevention of ICU-acquired muscle weakness

Early sepsis treatment	Treat muscle inactivity	Treat excessive muscular load	Metabolic derangement	Potential pharmacological intervention*
Early diagnosis (cultures)	Early goal-directed mobilization in ICU (SOMS)	Lung-protective mechanical ventilation	Early enteral nutrition	Vitamin D supplementation
Early focused antibiotic treatment	Early muscle stimulation	Goal-oriented mobilization	Late parenteral nutrition	ACE-inhibitors
Consider surgical drainage of focus	Spontaneous breathing trials			PGC-1a increasers Melanocortin-4
Fluid resuscitation	Daily review of lines and tubes that may hinder mobilization	Avoid aggressive mobilization in patients with inadequate tissue	Electrolyte correction	Myostatin inhibitors
	Avoid drug side effects • Daily drug review (NMBAs, opioids,	oxygenation		Complete reversal of neuromuscular blockade
	corticosteroids) • Drug holidays			* Promising concept, not yet in

Farhan H et al. (2015). Acquired muscle weakness in the surgical intensive care unit: Nosology, epidemiology, diagnosis and prevention. Anaethesiology 124:1, 207-34.

Recommendations for Prevention of ICU-Acquired Weakness p.1

Table 2. Recommendations for Prevention of ICU-acquired Muscle Weakness

	Study Design/ Sample Size	Setting	Intervention	Muscle Weakness	ICU LOS	Hospital LOS	Mechanical Ventilation (Duratior or Weaning)	Mortality	Level*	Grade†
Aggressive treatment of s	ensis									
Ranieri <i>et al.</i> ²⁰⁰	RCT/44 patients (37 completed)	Medical and surgical ICU	Protective (low tidal) mechanical ventilation <i>vs.</i> conventional	N/R	N/R	N/R	↓ (8 d less)‡	↓ (38 <i>vs</i> . 58%)	В	IIA
Rivers <i>et al.</i> ²⁰¹	RCT/263 patients	Mostly medical patients, but also surgical	6h of early goal-directed therapy vs. standard therapy	N/R	N/R	No difference	No difference	↓ (30.5 <i>vs.</i> 46.5%)‡	В	
Eisner <i>et al</i> . ²⁰²	RCT/902 patients	Medical and surgical patients	Protective (low tidal) mechanical ventilation <i>vs.</i> Conventional	N/R	N/R	N/R	Proportion of patients achieving unas- sisted breathing by day 28 (62 vs. 52%)‡	↓ (31 vs. 40%)‡	В	
Trzeciak et al. ²⁰³	Historical control trial/38 patients	Medical patients sent to ICU directly from ER	Early goal-directed therapy vs. standard therapy	N/R	↓ (1.8 <i>vs.</i> 4.2 d)	↓ (9 <i>vs.</i> 13 d)	N/R	↓ (18.2 <i>vs.</i> 43.8%)	В	
Yealy et al. ¹³⁴	RCT/1341 patients	Mostly medical patients	Protocol-based early goal-directed therapy vs. protocol-based standard therapy vs. usual care	N/R	No difference	No difference	No difference	No difference	В	
ARISE Investigators; ANZICS Clinical Trials Group ²⁰⁴	RCT/1600 patients	Medical patients sent to ICU directly from ER	Early goal-directed therapy vs. usual care	N/R	No difference	No difference	No difference	No difference	В	
Optimize the muscular loa	ad: early (< 48h) mobil	ization								
Kangas et al. ²⁰⁵	RCT/50 patients	Surgical patients	Early movement of the ankle in a brace vs. Achilles tendon immobilization in tension using a below- knee cast with the ankle in a neutral position for 6 wk	Excellent to good isokinetic calf scores in the early movemen group (56 vs. 29%)		N/R	N/R	N/R	В	IIA
Schweickert et al. ³⁹	Prospective RCT/104	Medical ICU	Progressive physical and occupational therapy vs. standard physical therapy	↓ (35 <i>vs.</i> 49%)	↓ (5.9 <i>v</i> s. 7.9 days)	No difference	↓(3.4 <i>vs.</i> 6.1 days)‡	↓ (18 <i>vs.</i> 25 %)	В	
Burtin <i>et al.</i> ²⁰⁶	Prospective RCT/90	Medical and surgical ICU	Standard PT mobilization plus cycling exercise	Improved quadriceps force at hospital discharge‡	No difference	↓ (36 <i>v</i> s. 40 d)	No difference	↓ (8 <i>v</i> s. 10%)	В	
Routsi <i>et al.</i> ⁴²	RCT/140 patients	Medical and surgical ICU	Electrical muscle stimulation to prevent CIPNM	MRC score improved (58 vs. 52)‡	↓ (14 <i>v</i> s. 22 d)	N/R	↓ (1 <i>vs.</i> 3 d)‡	No difference	В	
Keep the respiratory mus	cles moving			(/+						
Spontaneous breaths of	•	ilation								
Rathgeber et al ²⁰⁷	Prospective controlled trial/596 patients	Surgical ICU	Biphasic positive airway pressure ventilation vs. synchronized intermittent mandatory ventilation vs. assist/controlled mandatory ventilation	N/R	N/R	N/R	↓ (10.1 vs.14.7 vs. 13.2 h)‡	N/R	В	IIA

Farhan H et al. (2015). Acquired muscle weakness in the surgical intensive care unit: Nosology, epidemiology, diagnosis and prevention. Anaethesiology 124:1, 207-34.

	Study Design/ Sample Size	Setting	Intervention	Muscle Weakness	ICU LOS	Hospital LOS	Mechanical Ventilation (Duratior or Weaning)	1 Mortality	Level* (Fradet
Putensen <i>et al.</i> ²⁰⁸	RCT/30 patients	Trauma ICU	Airway pressure release ventilation with spontaneous breathing vs. pressure support controlled ventilation	N/R	↓ (23 vs. 30 d)‡	N/R	↓ (15 <i>vs.</i> 21 d)‡	No difference	В	
Protective mechanical	ventilation									
Amato et al. ²⁰⁹	RCT/53 patients	Medical and surgical ICU	Protective (low tidal) mechanical ventilation <i>vs.</i> conventional	N/R	N/R	N/R	Early weaning (66 vs. 29%)‡	↓ (38 vs. 71 %)‡	В	I
ARDS Network ²¹⁰	RCT/861 patients	Medical and surgical ICU	Protective (low tidal) mechanical ventilation <i>vs.</i> conventional	N/R	N/R	N/R	↓ (2 d less)‡	↓ (31 <i>vs.</i> 39.8%)‡	В	
Maxwell et al.211	RCT/63 patients	Surgical or trauma ICU	Low tidal volume ventilation vs. APRV	N/R	↓ (14.18 <i>v</i> s. 16.47 d)	N/R	↓ (8 <i>v</i> s. 10.49 d)	No difference	В	
Holiday periods										
Kress et al. ²¹²	RCT/128 patients	Medical ICU	Daily interruption vs. stand- ard interruption of sedative drug infusion	N/R	↓ (3.5 d less)‡	↓ (13.3 <i>vs.</i> 16.9 d)	↓ (4.9 <i>vs.</i> 7.3 d)‡	↓ (36 vs. 46.7%)	В	I
Girard et al. ⁶⁶	RCT/336 patients	Medical ICU	Daily spontaneous awaken- ing trial followed by a spontaneous breathing trial vs. sedation per usual care plus a daily spontaneous breathing trial	N/R	↓ (9.1 <i>v</i> s. 12.9 d)‡	↓ (14.9 <i>vs.</i> 19.2 d)‡	Ventilator-free days within 28-d study period): ↑ (14.7 vs. 11.6 d; mean increase 3.1 d)‡	↓ (44 vs. 58%)‡	В	
Robinson et al. ²¹³	RCT/143 patients	Surgical ICU	Daily interruption vs. standard interruption	N/R	↓ (4.1 <i>v</i> s. 5.9 d)	↓ (12 <i>v</i> s. 18 d)‡	↓ (1.2 <i>v</i> s. 3.2 d)‡	↓(14.7 <i>vs.</i> 17.6%)	В	
Papazian e <i>t al.</i> 41	RCT/340 patients	Medical and surgical ICU	Short period of cisatracurium besylate vs. placebo	No difference	N/R	Days outside the ICU:↑ (47.7 <i>vs.</i> 33.5 d)‡	Ventilator free days (at 90 d): ↑ (10.6 <i>v</i> s. 8.5 d)‡	At 90 d: ↓ (30.8 <i>vs.</i> 44.6%)‡	В	
Mehta <i>et al.</i> ²¹⁴	RCT/430 patients	Medical and surgical ICU	Protocolized sedation plus daily sedation interruption vs. protocolized sedation	N/R	No difference	No difference	In surgical and trauma patients: ↓ (6 <i>vs.</i> 13 d)‡	N/R	В	
Optimal nutrition							•			
Enteral nutrition										
Singh <i>et al.</i> ²¹⁵	RCT/43 patients	Surgical ICU	Feeding jejunostomy from 12h postoperatively vs. control	N/R	N/R	No difference	N/R	No difference	В	IIB
Marik and Zaloga ²¹⁶	Systematic review/15 RCT	Surgical or trauma ICU	Early vs. delayed enteral nutrition	N/R	N/R	↓ (2.2 d less; in trauma/ head injury/ burn patients 4.04 d less)‡	N/R	↓(8 vs. 11.5%)	В	
Minard et al. ²¹⁷	RCT/30 patients	Trauma ICU	Early vs. delayed enteral feedings	N/R	No difference	No difference	No difference	↓ (8 <i>v</i> s. 27%)‡	В	

	Study Design/ Sample Size	Setting	Intervention	Muscle Weakness	ICU LOS	Hospital LOS	Mechanical Ventilation (Duratior or Weaning)	n Mortality	Level*	Grade†
Lewis et al. ²¹⁸	Systematic review and metanalysis/ 837 patients	Surgical patients	Enteral feeding started within 24 h after surgery vs. nil by mouth management in elective gastrointestinal surgery	N/R	N/R	↓ (10.4 <i>vs.</i> 12.9 d)‡	N/R	↓ (7 <i>v</i> s. 13%)	A	
Braunschweig et al. ²¹⁹	Metanalysis/ 27 studies; 1,828 patients	Medical and surgical patients	Parenteral nutrition vs. tube feeding vs. standard care	N/R	N/R	N/R	N/R	↑ In standard of care	А	
Heyland et al. ²²⁰	Systematic review/8 RCT	Medical and surgical ICU	Early vs. delayed enteral nutrition or intravenous fluids	N/R	No difference	No difference	N/R	↓ (6.3 <i>v</i> s. 14.6%)	В	
Dvorak et al. ²²¹	RCT/23 patients (17 patients included in analysis)	Trauma ICU	Early vs. late enteral feeding	N/R	N/R	↑ (53 <i>vs.</i> 37.9 d)	↑ (763 <i>vs.</i> 502 h)	N/R	В	
Peck <i>et al.</i> ²²²	RCT/95 patients eligible (data analyzed from 27 patients)	Trauma (burn) ICU	Early vs. late enteral feeding on postburn metabolism	N/R	↑ (40 <i>vs.</i> 37 d)	No difference	↑ (32 <i>vs.</i> 23 d)	↓ (28 <i>vs.</i> 38%)	В	
Artinian et al. ²²³	Retrospective cohort/4049 patients	Medical ICU	Early vs. delayed enteral nutrition	N/R	↑ (10.9 <i>vs.</i> 10.2 d)‡	N/R	No difference	↓ (28.7 <i>v</i> s. 33.5%)‡	С	
Harvey et al. ²²⁴	RCT/2400 patients	Medical and surgical ICU	Parenteral vs. enteral nutrition	N/R	No difference	No difference	No difference	↓ (33.1 <i>vs.</i> 34.2%)	В	
Parenteral nutrition										I
Casaer et al. ¹⁶²	RCT/4640 patients	ICU	Late vs. early parenteral nutrition	N/R	↓ (3 <i>vs.</i> 4 d)‡	↓ (14 <i>vs.</i> 16 d)‡	Requiring > 2 d of mechanical ven- tilation: ↓ (36.3 vs. 40.2%)‡	No difference	В	IIB
Hermans et al. ¹³¹	RCT/600 patients	Mostly surgical but also medical ICU	Late vs. early parenteral nutrition	↓ (34 <i>vs.</i> 43 %)‡	↓ (11 <i>v</i> s. 13 d)‡	↓ (27 <i>vs</i> . 32 d)	↓ (6 <i>vs.</i> 7 d)	↑ (11 <i>vs.</i> 9%)	В	
Heidegger et al. ¹⁶⁴	RCT/305 patients	Surgical and medical ICU	Supplemental parenteral nutrition with enteral nutrition vs. enteral nutri- tion alone from day 4 to 8 in the ICU	N/R	No difference	No difference	No difference	↓ (13 <i>vs</i> . 18%)	В	
Doig <i>et al.</i> ²²⁵	RCT/1,372 patients	Surgical and medical ICU	Early parenteral nutrition within 24 h after ICU admission vs. standard therapy	N/R	↓ (8.6 <i>v</i> s. 9.3 d)	No difference	↓(7.26 <i>vs.</i> 7.73 d per 10 patient × ICU days)‡	↓ (21.5 <i>v</i> s. 22.8%)	В	
Tight glycemic control										
van den Berghe et al. ¹⁹³	RCT/1548 patients (preplanned subanalysis of patients still in ICU on day 7: 405 patients)	Surgical ICU	Intensive insulin therapy vs. conventional management	↓ (25 <i>v</i> s. 49%)‡	↓ (14 <i>v</i> s. 15 d)‡	N/R	↓ (11 <i>vs</i> . 13 d)‡	↓ (12 <i>vs</i> . 21%)‡	В	III

	Study Design/ Sample Size	Setting	Intervention	Muscle Weakness	ICU LOS	Hospital LOS	Mechanical Ventilation (Duration or Weaning)	n Mortality	Level* Grade†
Brunkhorst et al.226	RCT/537	Medical and surgical ICU	Intensive insulin therapy vs. conventional management	N/R	↑ (16 <i>v</i> s. 14 d)	N/R	No difference	↑ (39.7 <i>vs.</i> 35.4%)	В
Wiener et al. ²²⁷	Meta-analysis/ 34 trials; 29 RCTs contributed data	Medical and surgical ICU	Intensive insulin therapy vs. conventional management	N/R	N/R	N/R	N/R	↓ (21.6 vs. 23.3%)	A
Griesdale et al.228	Meta-analysis/26 trials	6 trials in medical ICU	Intensive insulin therapy vs. conventional management	N/R	N/R	N/R	N/R	↓ in the surgical ICU,‡not in the others	A
Finfer et al. ²²⁹	RCT/6104 patients	Medical and surgical ICU	Intensive insulin therapy vs. conventional management	N/R	No difference	No difference	No difference	↑ (27.5 <i>vs.</i> 24.9%)‡	В
Preiser et al.230	RCT/1101	Medical and surgical ICU	Intensive insulin therapy vs. conventional management	N/R	No difference	No difference	No difference	↑ (17.2 <i>vs.</i> 15.3%)	В
Marik and Preiser ²³¹	Systematic review + meta-analysis/7 trials	Medical and surgical ICU	Impact of tight glycemic control	N/R	N/R	N/R	N/R	No difference	A
Kansagara et al. ²³²	Systematic review/21 trials	Medical and surgical ICU	Benefits and harms of IIT in hospitalized patients	N/R	↓ (1.484 d less) in the surgi- cal ICU	No difference	N/R	No difference	A
Hermans et al.43	Systematic review/2 trials	Medical and surgical ICU	IIT on incidence of CIM/CIP	↓‡	↓ (1.48 d less)‡	N/R	↓ (2 d less)‡	No difference	А

* American Heart Association levels of evidence: A (multiple populations evaluated, data derived from multiple randomized clinical trials or meta-analyses), B (limited populations evaluated, data derived from a single randomized clinical trial or nonrandomized studies), and C (very limited populations evaluated, only consensus opinion of experts, case studies, or standard of care). † Recommendation: I (benefits greatly surpass risks, procedure/treatment should be performed or administered), IIA (benefits surpass risks, additional focused studies needed, it is reasonable to perform procedure/treatment), IIB (benefit surpasses risks, additional studies with broad objectives needed, procedure/treatment may be considered), and III (risks surpasses benefit, procedure/treatment should not be performed. ‡ Statistically significant.

APRV = airway pressure release ventilation; ARDS = acute respiratory distress syndrome; ARISE = Australasian Resuscitation in Sepsis Evaluation; CIM = critical illness myopathy; CIP = critical illness polyneuropathy and myopathy; ER = emergency room; ICU = intensive care unit; IIT = intensive insulin therapy; LOS = length of stay; MRC = Medical Research Council Scale for muscle strength; N/R = not reported; PT = physical therapy; RCT = randomized controlled trial.

Summary of Interventions

Aggressive treatment of underlying problem
Minimize paralytic agents, sedation & duration of mechanical ventilation

 Institute early active & passive mobilization even during mechanical ventilation

Optimize nutrition

- enteral early, parenteral later
- Target glycemic levels 110-180 mg/dl (140 target)
 - not "tight" 80-110mg/dl

